Developing an IoT-enabled probabilistic model for quick identification of hidden radioactive materials in maritime port operations to strengthen global supply chain security

S. Jakovlev, Tomas Eglynas, Mindaugas Jusis, Miroslav Voznak
{"title":"Developing an IoT-enabled probabilistic model for quick identification of hidden radioactive materials in maritime port operations to strengthen global supply chain security","authors":"S. Jakovlev, Tomas Eglynas, Mindaugas Jusis, Miroslav Voznak","doi":"10.1177/15485129241251490","DOIUrl":null,"url":null,"abstract":"Uncovering hidden radioactive materials continues to be a major hurdle in worldwide supply chains. Recent research has not adequately investigated practical Internet of Things (IoT)-based approaches for improving and implementing efficient data fusion techniques. Current systems often misuse resources, leading to security vulnerabilities in typical settings. Our research delves into the fundamental principles of detection using both single and multiple sensor configurations, adopting a probabilistic method for merging data. We introduce a model aimed at accelerating the detection of radiation emissions in actual port operations. The results highlight the model’s effectiveness in rapid identification and determine the best conditions for its application in scenarios involving stacked containers, whether they are on ships or positioned in storage areas.","PeriodicalId":508000,"journal":{"name":"The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129241251490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Uncovering hidden radioactive materials continues to be a major hurdle in worldwide supply chains. Recent research has not adequately investigated practical Internet of Things (IoT)-based approaches for improving and implementing efficient data fusion techniques. Current systems often misuse resources, leading to security vulnerabilities in typical settings. Our research delves into the fundamental principles of detection using both single and multiple sensor configurations, adopting a probabilistic method for merging data. We introduce a model aimed at accelerating the detection of radiation emissions in actual port operations. The results highlight the model’s effectiveness in rapid identification and determine the best conditions for its application in scenarios involving stacked containers, whether they are on ships or positioned in storage areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发基于物联网的概率模型,快速识别海运港口作业中隐藏的放射性物质,加强全球供应链安全
发现隐藏的放射性材料仍然是全球供应链中的一大障碍。最近的研究尚未充分调查基于物联网(IoT)的实用方法,以改进和实施高效的数据融合技术。当前的系统经常滥用资源,导致典型环境下的安全漏洞。我们的研究深入探讨了使用单传感器和多传感器配置进行检测的基本原理,并采用概率方法进行数据融合。我们引入了一个模型,旨在加速检测实际港口作业中的辐射排放。研究结果凸显了该模型在快速识别方面的有效性,并确定了在涉及堆叠集装箱的情况下应用该模型的最佳条件,无论这些集装箱是在船上还是放置在仓储区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A quantitative comparison of two different models of minefield transit Cutting edge technologies for future military applications: trends and challenges Developing an IoT-enabled probabilistic model for quick identification of hidden radioactive materials in maritime port operations to strengthen global supply chain security Statement of requirements on the accuracy of rocket CFD analysis using exterior ballistics for example rocket models Enhancing military medical evacuation dispatching with armed escort management: comparing model-based reinforcement learning approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1