Molecular dynamics simulation study of nitrogen vacancy color centers prepared by carbon ion implantation into diamond

Wei Zhao, Zongwei Xu, Pengfei Wang, Hanyi Chen
{"title":"Molecular dynamics simulation study of nitrogen vacancy color centers prepared by carbon ion implantation into diamond","authors":"Wei Zhao, Zongwei Xu, Pengfei Wang, Hanyi Chen","doi":"10.1063/10.0025756","DOIUrl":null,"url":null,"abstract":"Nitrogen vacancy (NV) color centers in diamond have useful applications in quantum sensing and fluorescent marking. They can be generated experimentally by ion implantation, femtosecond lasers, and chemical vapor deposition. However, there is a lack of studies of the yield of NV color centers at the atomic scale. In the molecular dynamics simulations described in this paper, NV color centers are prepared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing. The differences between the yields of NV color centers produced by implantation of carbon (C) and nitrogen (N) ions, respectively, are investigated. It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy. The effects of different pre-doping concentrations (400–1500 ppm) and implantation energies (1.0–3.0 keV) on the NV color center yield are analyzed, and it is shown that a pre-doping concentration of 1000 ppm with 2 keV C-ion implantation can produce a 13% yield of NV color centers after 1600 K annealing for 7.4 ns. Finally, a brief comparison of the NV color center identification methods is presented, and it is found that the error rate of an analysis utilizing the identify diamond structure + coordination analysis method is reduced by about 7% compared with conventional identification methods.","PeriodicalId":87330,"journal":{"name":"Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology and Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/10.0025756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen vacancy (NV) color centers in diamond have useful applications in quantum sensing and fluorescent marking. They can be generated experimentally by ion implantation, femtosecond lasers, and chemical vapor deposition. However, there is a lack of studies of the yield of NV color centers at the atomic scale. In the molecular dynamics simulations described in this paper, NV color centers are prepared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing. The differences between the yields of NV color centers produced by implantation of carbon (C) and nitrogen (N) ions, respectively, are investigated. It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy. The effects of different pre-doping concentrations (400–1500 ppm) and implantation energies (1.0–3.0 keV) on the NV color center yield are analyzed, and it is shown that a pre-doping concentration of 1000 ppm with 2 keV C-ion implantation can produce a 13% yield of NV color centers after 1600 K annealing for 7.4 ns. Finally, a brief comparison of the NV color center identification methods is presented, and it is found that the error rate of an analysis utilizing the identify diamond structure + coordination analysis method is reduced by about 7% compared with conventional identification methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳离子植入金刚石制备的氮空位彩色中心的分子动力学模拟研究
金刚石中的氮空位(NV)色彩中心可用于量子传感和荧光标记。它们可以通过离子注入、飞秒激光和化学气相沉积等实验方法生成。然而,目前还缺乏对原子尺度上 NV 色心产率的研究。在本文所述的分子动力学模拟中,NV 色心是通过在预掺氮的金刚石中进行离子注入并随后退火制备的。研究了分别通过植入碳(C)离子和氮(N)离子制备的 NV 颜色中心的产量差异。结果发现,C 离子植入能产生更多的 NV 颜色中心,而且定位精度更高。分析了不同的预掺杂浓度(400-1500 ppm)和植入能量(1.0-3.0 keV)对 NV 颜色中心产率的影响,结果表明,预掺杂浓度为 1000 ppm、2 keV 的 C 离子植入在 1600 K 退火 7.4 ns 后可产生 13% 的 NV 颜色中心产率。最后,还对 NV 颜色中心识别方法进行了简要比较,发现与传统识别方法相比,利用识别金刚石结构 + 配位分析方法进行分析的错误率降低了约 7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electromagnetic vibrational energy harvester with targeted frequency-tuning capability based on magnetic levitation Molecular dynamics simulation study of nitrogen vacancy color centers prepared by carbon ion implantation into diamond Voltage-modulated polymer nanopore field-effect transistor for multi-sized nanoparticle detection Biomimetic 3D printing of composite structures with decreased cracking Flexible polydimethylsiloxane pressure sensor with micro-pyramid structures and embedded silver nanowires: A novel application in urinary flow measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1