Software Reliability Model Estimation for an Indeterministic Crime Cluster through Reinforcement Learning

Dileep Kumar Kadali, R. Mohan, M. Naik
{"title":"Software Reliability Model Estimation for an Indeterministic Crime Cluster through Reinforcement Learning","authors":"Dileep Kumar Kadali, R. Mohan, M. Naik","doi":"10.61356/j.nswa.2024.17246","DOIUrl":null,"url":null,"abstract":"The software reliability model estimates the probability of data failure in a specific environment, significantly impacting reliability and trustworthiness. The paper study focuses on cluster crime data, i.e., indeterministic in Neutrosophic Logic, using a software reliability model. The study utilizes reinforcement learning, Neutrosophic logic, and non-homogeneous Poisson process crime data to estimate indeterministic cluster data in crime. The \"Non-homogeneous Poisson Process with Neutrosophic Logic\" technique performs well in evaluating and deterring crime based on crime data analysis. The crime cluster involving offenders correctly classified as failure to accomplish does better than uncertain cluster reliability estimation with least squares and logistic regression analysis. The method enables crime prediction and prevention by using concave growth models to create an uncertain crime cluster, penalizing the correct person.","PeriodicalId":498095,"journal":{"name":"Neutrosophic Systems with Applications","volume":"21 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neutrosophic Systems with Applications","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.61356/j.nswa.2024.17246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The software reliability model estimates the probability of data failure in a specific environment, significantly impacting reliability and trustworthiness. The paper study focuses on cluster crime data, i.e., indeterministic in Neutrosophic Logic, using a software reliability model. The study utilizes reinforcement learning, Neutrosophic logic, and non-homogeneous Poisson process crime data to estimate indeterministic cluster data in crime. The "Non-homogeneous Poisson Process with Neutrosophic Logic" technique performs well in evaluating and deterring crime based on crime data analysis. The crime cluster involving offenders correctly classified as failure to accomplish does better than uncertain cluster reliability estimation with least squares and logistic regression analysis. The method enables crime prediction and prevention by using concave growth models to create an uncertain crime cluster, penalizing the correct person.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过强化学习估计不确定犯罪团伙的软件可靠性模型
软件可靠性模型可估算特定环境中数据失效的概率,对可靠性和可信度有重大影响。本文的研究重点是使用软件可靠性模型分析集群犯罪数据,即中性逻辑中的不确定性数据。该研究利用强化学习、中性逻辑和非均质泊松过程犯罪数据来估计犯罪中的不确定性集群数据。基于犯罪数据分析的 "非均质泊松过程与中性逻辑 "技术在评估和威慑犯罪方面表现出色。被正确归类为 "未完成任务 "的罪犯犯罪集群的表现优于用最小二乘法和逻辑回归分析进行的不确定集群可靠性估计。该方法通过使用凹增长模型创建不确定的犯罪群组,惩罚正确的人,从而实现犯罪预测和预防。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Robust Decision-Making Model for Medical Supplies via Selecting Appropriate Unmanned Aerial Vehicle An Innovative Approach on Yao’s Three-Way Decision Model Using Intuitionistic Fuzzy Sets for Medical Diagnosis On Heptagonal Neutrosophic Semi-open Sets in Heptagonal Neutrosophic Topological Spaces: Testing Proofs by Examples Domination on Bipolar Fuzzy Graph Operations: Principles, Proofs, and Examples Software Reliability Model Estimation for an Indeterministic Crime Cluster through Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1