Modeling Activity-Driven Music Listening with PACE

Lilian Marey, Bruno Sguerra, Manuel Moussallam
{"title":"Modeling Activity-Driven Music Listening with PACE","authors":"Lilian Marey, Bruno Sguerra, Manuel Moussallam","doi":"10.1145/3627508.3638299","DOIUrl":null,"url":null,"abstract":"While the topic of listening context is widely studied in the literature of music recommender systems, the integration of regular user behavior is often omitted. In this paper, we propose PACE (PAttern-based user Consumption Embedding), a framework for building user embeddings that takes advantage of periodic listening behaviors. PACE leverages users' multichannel time-series consumption patterns to build understandable user vectors. We believe the embeddings learned with PACE unveil much about the repetitive nature of user listening dynamics. By applying this framework on long-term user histories, we evaluate the embeddings through a predictive task of activities performed while listening to music. The validation task's interest is two-fold, while it shows the relevance of our approach, it also offers an insightful way of understanding users' musical consumption habits.","PeriodicalId":220434,"journal":{"name":"Conference on Human Information Interaction and Retrieval","volume":"29 1","pages":"346-351"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Human Information Interaction and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627508.3638299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While the topic of listening context is widely studied in the literature of music recommender systems, the integration of regular user behavior is often omitted. In this paper, we propose PACE (PAttern-based user Consumption Embedding), a framework for building user embeddings that takes advantage of periodic listening behaviors. PACE leverages users' multichannel time-series consumption patterns to build understandable user vectors. We believe the embeddings learned with PACE unveil much about the repetitive nature of user listening dynamics. By applying this framework on long-term user histories, we evaluate the embeddings through a predictive task of activities performed while listening to music. The validation task's interest is two-fold, while it shows the relevance of our approach, it also offers an insightful way of understanding users' musical consumption habits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用 PACE 建立活动驱动的音乐聆听模型
虽然音乐推荐系统的文献中广泛研究了收听环境这一主题,但往往忽略了对用户定期行为的整合。在本文中,我们提出了 PACE(PAttern-based user Consumption Embedding,基于时间序列的用户消费嵌入),这是一个利用周期性收听行为构建用户嵌入的框架。PACE 利用用户的多通道时间序列消费模式来构建可理解的用户向量。我们相信,通过 PACE 学习到的嵌入式技术可以揭示用户收听动态的重复性。通过将该框架应用于长期用户历史记录,我们通过预测用户在听音乐时所进行的活动来评估嵌入。该验证任务具有双重意义,它不仅展示了我们的方法的相关性,还为了解用户的音乐消费习惯提供了一种深刻的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Activity-Driven Music Listening with PACE Why Do Customers Return Products? Using Customer Reviews to Predict Product Return Behaviors Decoding Distress: How Search Engine Data Reveals Socioeconomic Disparities in Mental Health The Dark Matter of Serendipity in Recommender Systems A User Study on the Acceptance of Native Advertising in Generative IR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1