Machine learning-based virtual sensors for reduced energy consumption in frost-free refrigerators

Alejandro Alcaraz, Dennis Ilare, Alessandro Mansutti, Gaetano Cascini
{"title":"Machine learning-based virtual sensors for reduced energy consumption in frost-free refrigerators","authors":"Alejandro Alcaraz, Dennis Ilare, Alessandro Mansutti, Gaetano Cascini","doi":"10.1017/pds.2024.193","DOIUrl":null,"url":null,"abstract":"This study explores Machine Learning (ML) integration for household refrigerator efficiency. The ML approach allows to optimize defrost cycles, offering energy savings without complexity or cost escalation. The paper initially presents a State-of-the-Art of ML potential to improve functionality and efficiency of refrigerators. Since frost is the cause of significant energy losses, a ML-based Virtual Sensor was developed to predict frost formation on the evaporator also in low -level refrigerators. The results show the environmental significance of ML in enhancing appliance efficiency.","PeriodicalId":489438,"journal":{"name":"Proceedings of the Design Society","volume":"17 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Design Society","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1017/pds.2024.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores Machine Learning (ML) integration for household refrigerator efficiency. The ML approach allows to optimize defrost cycles, offering energy savings without complexity or cost escalation. The paper initially presents a State-of-the-Art of ML potential to improve functionality and efficiency of refrigerators. Since frost is the cause of significant energy losses, a ML-based Virtual Sensor was developed to predict frost formation on the evaporator also in low -level refrigerators. The results show the environmental significance of ML in enhancing appliance efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的虚拟传感器可降低无霜冰箱的能耗
本研究探讨了机器学习(ML)与家用冰箱效率的结合。ML 方法可以优化除霜周期,在不增加复杂性和成本的情况下节约能源。本文首先介绍了 ML 在提高冰箱功能和效率方面的潜力。由于霜是造成大量能源损失的原因,因此开发了一种基于 ML 的虚拟传感器,用于预测低层冰箱蒸发器上霜的形成。结果表明,ML 在提高设备效率方面具有重要的环保意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing lab-on-a-chip systems with attribute dependency graphs Implementing an open innovation process in the premium marine industry Variability in complex product/system design: case study in automotive industry Computing solution spaces for gear box design Machine learning-based virtual sensors for reduced energy consumption in frost-free refrigerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1