Saidulu Inamanamelluri, D. Dhanasekaran, Radhika Bhaskar
{"title":"Low power content addressable memory designing and implementation using voltage swing self adjustable match line technique","authors":"Saidulu Inamanamelluri, D. Dhanasekaran, Radhika Bhaskar","doi":"10.1016/j.suscom.2024.101002","DOIUrl":null,"url":null,"abstract":"<div><p>One of the essential components of computer systems is memory. A primary hindrance in this regard is the memory speed. Content Addressable Memory (CAM) speeds up transformations and table lookups in network routers and data processing systems for hardware search engines. Parallel seeks using the CAM (Content Addressable Memory) model are often used to enhance memory performance. This paper uses the voltage swing self-adjustable match line (VSSA-ML) technique to describe low-power content addressable memory design and implementation. This project decreases Match Line (ML) power loss by reducing load capacitance and ML voltage swing. A simple ML voltage detector is proposed instead of the complex, fully different detector that allows ML voltage swings near zero. This paper presents 6 T 8×8 CAM arrays using VSSA-ML Technique using Tanner tools 45-nm technology. On the other hand, this design enhances robustness in processing variations by self-adjusting voltage swings. Implementation analysis states that the described mode 6 T 8×8 CAM design utilized fewer MOSFETs than the 8 T 8×8 CAM array.</p></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"43 ","pages":"Article 101002"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924000477","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
One of the essential components of computer systems is memory. A primary hindrance in this regard is the memory speed. Content Addressable Memory (CAM) speeds up transformations and table lookups in network routers and data processing systems for hardware search engines. Parallel seeks using the CAM (Content Addressable Memory) model are often used to enhance memory performance. This paper uses the voltage swing self-adjustable match line (VSSA-ML) technique to describe low-power content addressable memory design and implementation. This project decreases Match Line (ML) power loss by reducing load capacitance and ML voltage swing. A simple ML voltage detector is proposed instead of the complex, fully different detector that allows ML voltage swings near zero. This paper presents 6 T 8×8 CAM arrays using VSSA-ML Technique using Tanner tools 45-nm technology. On the other hand, this design enhances robustness in processing variations by self-adjusting voltage swings. Implementation analysis states that the described mode 6 T 8×8 CAM design utilized fewer MOSFETs than the 8 T 8×8 CAM array.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.