Zhaoyue Yang , Tianbo Liu , Jianqiang Fan , Yiqiang Chen , Shaolong Wu , Jingjing Li , Zhenghua Liu , Zhendong Yang , Liangzhi Li , Suoni Liu , Hongwu Yang , Huaqun Yin , Delong Meng , Qianjun Tang
{"title":"Biocontrol agents modulate phyllosphere microbiota interactions against pathogen Pseudomonas syringae","authors":"Zhaoyue Yang , Tianbo Liu , Jianqiang Fan , Yiqiang Chen , Shaolong Wu , Jingjing Li , Zhenghua Liu , Zhendong Yang , Liangzhi Li , Suoni Liu , Hongwu Yang , Huaqun Yin , Delong Meng , Qianjun Tang","doi":"10.1016/j.ese.2024.100431","DOIUrl":null,"url":null,"abstract":"<div><p>The pathogen <em>Pseudomonas syringae</em>, responsible for a variety of diseases, poses a considerable threat to global crop yields. Emerging biocontrol strategies employ antagonistic microorganisms, utilizing phyllosphere microecology and systemic resistance to combat this disease. However, the interactions between phyllosphere microbial dynamics and the activation of the plant defense system remain poorly understood. Here we show significant alterations in phyllosphere microbiota structure and plant gene expression following the application of biocontrol agents. We reveal enhanced collaboration and integration of <em>Sphingomonas</em> and <em>Methylobacterium</em> within the microbial co-occurrence network. Notably, <em>Sphingomonas</em> inhibits <em>P. syringae</em> by disrupting pathogen chemotaxis and virulence. Additionally, both <em>Sphingomonas</em> and <em>Methylobacterium</em> activate plant defenses by upregulating pathogenesis-related gene expression through abscisic acid, ethylene, jasmonate acid, and salicylic acid signaling pathways. Our results highlighted that biocontrol agents promote plant health, from reconstructing beneficial microbial consortia to enhancing plant immunity. The findings enrich our comprehension of the synergistic interplays between phyllosphere microbiota and plant immunity, offering potential enhancements in biocontrol efficacy for crop protection.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"21 ","pages":"Article 100431"},"PeriodicalIF":14.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000450/pdfft?md5=191a356a44a8e5ff16443454fdefd3b2&pid=1-s2.0-S2666498424000450-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424000450","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The pathogen Pseudomonas syringae, responsible for a variety of diseases, poses a considerable threat to global crop yields. Emerging biocontrol strategies employ antagonistic microorganisms, utilizing phyllosphere microecology and systemic resistance to combat this disease. However, the interactions between phyllosphere microbial dynamics and the activation of the plant defense system remain poorly understood. Here we show significant alterations in phyllosphere microbiota structure and plant gene expression following the application of biocontrol agents. We reveal enhanced collaboration and integration of Sphingomonas and Methylobacterium within the microbial co-occurrence network. Notably, Sphingomonas inhibits P. syringae by disrupting pathogen chemotaxis and virulence. Additionally, both Sphingomonas and Methylobacterium activate plant defenses by upregulating pathogenesis-related gene expression through abscisic acid, ethylene, jasmonate acid, and salicylic acid signaling pathways. Our results highlighted that biocontrol agents promote plant health, from reconstructing beneficial microbial consortia to enhancing plant immunity. The findings enrich our comprehension of the synergistic interplays between phyllosphere microbiota and plant immunity, offering potential enhancements in biocontrol efficacy for crop protection.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.