M.K. Nayak , B.B. Sahoo , D.N. Thatoi , S. Nazari , Rifaqat Ali , Ali J. Chamkha
{"title":"Recent advances on supercapacitor electrode materials from biowastes- a review","authors":"M.K. Nayak , B.B. Sahoo , D.N. Thatoi , S. Nazari , Rifaqat Ali , Ali J. Chamkha","doi":"10.1016/j.jsamd.2024.100734","DOIUrl":null,"url":null,"abstract":"<div><p>As witnessed worldwide, there has been rapid growth in research and the creation of energy storage devices such as supercapacitor electrodes that can store and deliver energy at a speedy rate, and provide high currents in a short duration. This article deals with a review on how supercapacitor (SC) electrode materials get developed from bio-waste like cooked chicken bone waste (CCBW), chicken egg shells, fish gills, fishbone waste, and biodegradable and non-biodegradable marine wastes such as plastics, mangroves, chitosans, and mussel shells, which provide economic benefit for the substantiality of supercapacitor technology. The synthesis and preparation involved in the study include one step activation and colloidal blending processes. The characterization of the as-prepared materials is carried out by implementing XRD, FESEM, EDS, FT-IR, TGA, TEM, and RAMAN spectroscopy. It is visualized that electrode materials possess high carbon content with porosity leading to a greater specific surface area, which is essential for high conductance SC electrodes. Researche on electrochemical analysis of prepared electrodes from such marine waste materials using CV, GCD, and EIS techniques has been analyzed.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"9 3","pages":"Article 100734"},"PeriodicalIF":6.7000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000650/pdfft?md5=b1e57e755e84cb24646fbd766cc65a9c&pid=1-s2.0-S2468217924000650-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000650","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As witnessed worldwide, there has been rapid growth in research and the creation of energy storage devices such as supercapacitor electrodes that can store and deliver energy at a speedy rate, and provide high currents in a short duration. This article deals with a review on how supercapacitor (SC) electrode materials get developed from bio-waste like cooked chicken bone waste (CCBW), chicken egg shells, fish gills, fishbone waste, and biodegradable and non-biodegradable marine wastes such as plastics, mangroves, chitosans, and mussel shells, which provide economic benefit for the substantiality of supercapacitor technology. The synthesis and preparation involved in the study include one step activation and colloidal blending processes. The characterization of the as-prepared materials is carried out by implementing XRD, FESEM, EDS, FT-IR, TGA, TEM, and RAMAN spectroscopy. It is visualized that electrode materials possess high carbon content with porosity leading to a greater specific surface area, which is essential for high conductance SC electrodes. Researche on electrochemical analysis of prepared electrodes from such marine waste materials using CV, GCD, and EIS techniques has been analyzed.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.