Carlos Gallardo-Bustos, Natalia Tapia, Ignacio T. Vargas
{"title":"Synthetic greywater treatment using a scalable granular activated carbon bioelectrochemical reactor","authors":"Carlos Gallardo-Bustos, Natalia Tapia, Ignacio T. Vargas","doi":"10.1016/j.bioelechem.2024.108741","DOIUrl":null,"url":null,"abstract":"<div><p>Greywater reuse has emerged as a promising solution for addressing water shortages. However, greywater needs treatment before reuse to meet the required water quality standards. Conventional wastewater treatment technologies are unsuitable for recreating highly decentralized domestic greywater. This study evaluated bioelectrochemical reactors (BERs) with granular activated carbon (GAC) as a sustainable alternative for developing decentralized and low-cost biological treatment systems. BERs using GAC as the anode material and conventional GAC biofilters (BFs) for synthetic greywater treatment were operated in batch mode for 110 days in two stages: (i) with polarized anodes at −150 mV vs. Ag/AgCl and (ii) as a microbial fuel cell with an external resistance of 1 kΩ. Anode polarization produced an electrosorption effect, increasing the ion removal of the BERs. Power production during the operation and cyclic voltammetry tests of the extracted granules revealed electrochemically active biofilm development on the BERs. Although low power density (0.193 ± 0.052 µW m<sup>−3</sup>) was observed in BERs, they showed a similar performance in sCOD removal (BER = 91.6–89.6 %; BF = 96.2–93.2 %) and turbidity removal (BER = 81–82 %; BF = 30–62 %) to BFs that used 50 % aeration. Additionally, scanning electron microscopy of sampled granules showed higher biomass formation in BER granules than in BF granules, suggesting a higher contribution of sessile (vs. planktonic) cells to the treatment. Thus, the results highlight the synergistic removal effect of the GAC-based BER. The scalable design presented in this study represents a proof-of-concept for developing BERs to use in decentralized greywater treatment systems.</p></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"159 ","pages":"Article 108741"},"PeriodicalIF":4.8000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424001038","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Greywater reuse has emerged as a promising solution for addressing water shortages. However, greywater needs treatment before reuse to meet the required water quality standards. Conventional wastewater treatment technologies are unsuitable for recreating highly decentralized domestic greywater. This study evaluated bioelectrochemical reactors (BERs) with granular activated carbon (GAC) as a sustainable alternative for developing decentralized and low-cost biological treatment systems. BERs using GAC as the anode material and conventional GAC biofilters (BFs) for synthetic greywater treatment were operated in batch mode for 110 days in two stages: (i) with polarized anodes at −150 mV vs. Ag/AgCl and (ii) as a microbial fuel cell with an external resistance of 1 kΩ. Anode polarization produced an electrosorption effect, increasing the ion removal of the BERs. Power production during the operation and cyclic voltammetry tests of the extracted granules revealed electrochemically active biofilm development on the BERs. Although low power density (0.193 ± 0.052 µW m−3) was observed in BERs, they showed a similar performance in sCOD removal (BER = 91.6–89.6 %; BF = 96.2–93.2 %) and turbidity removal (BER = 81–82 %; BF = 30–62 %) to BFs that used 50 % aeration. Additionally, scanning electron microscopy of sampled granules showed higher biomass formation in BER granules than in BF granules, suggesting a higher contribution of sessile (vs. planktonic) cells to the treatment. Thus, the results highlight the synergistic removal effect of the GAC-based BER. The scalable design presented in this study represents a proof-of-concept for developing BERs to use in decentralized greywater treatment systems.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.