Anna Szewczyk , Nina Rembiałkowska , Marta Migocka-Patrzałek , Wojciech Szlasa , Agnieszka Chwiłkowska , Małgorzata Daczewska , Vitalij Novickij , Julita Kulbacka
{"title":"Optimizing Jasplakinolide delivery in rhabdomyosarcoma cells using pulsed electric fields (PEFs) for enhanced therapeutic impact","authors":"Anna Szewczyk , Nina Rembiałkowska , Marta Migocka-Patrzałek , Wojciech Szlasa , Agnieszka Chwiłkowska , Małgorzata Daczewska , Vitalij Novickij , Julita Kulbacka","doi":"10.1016/j.bioelechem.2025.108969","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the combination of jasplakinolide with electroporation (JSP + EP), a method enhancing targeted molecule delivery. CHO-K1 (Chinese hamster ovarian), C2C12 (mouse myoblast), and RD (rhabdomyosarcoma) cells were treated with jasplakinolide (50 nM) in HEPES buffer and exposed to electrical pulses (0.8–1.2 kV/cm). Cell viability was measured via the MTS assay, cytoskeleton structure was assessed with confocal microscopy, and docking studies examined jasplakinolide-actin interactions. The combination of jasplakinolide and electric pulses synergistically affected RMS cells (Rhabdomyosarcoma), causing significant cytoskeletal changes and reduced viability. Docking studies revealed that jasplakinolide interacts with both monomeric and filamentous actin, highlighting a dual mechanism. Confocal imaging showed substantial actin cytoskeleton disruption in cancer cells, with minimal effects on normal cells. Jasplakinolide combined with electric pulses can specifically target cancer cells with less cytotoxicity to normal cells, potentially reducing side effects following the clinical procedure.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108969"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000726","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the combination of jasplakinolide with electroporation (JSP + EP), a method enhancing targeted molecule delivery. CHO-K1 (Chinese hamster ovarian), C2C12 (mouse myoblast), and RD (rhabdomyosarcoma) cells were treated with jasplakinolide (50 nM) in HEPES buffer and exposed to electrical pulses (0.8–1.2 kV/cm). Cell viability was measured via the MTS assay, cytoskeleton structure was assessed with confocal microscopy, and docking studies examined jasplakinolide-actin interactions. The combination of jasplakinolide and electric pulses synergistically affected RMS cells (Rhabdomyosarcoma), causing significant cytoskeletal changes and reduced viability. Docking studies revealed that jasplakinolide interacts with both monomeric and filamentous actin, highlighting a dual mechanism. Confocal imaging showed substantial actin cytoskeleton disruption in cancer cells, with minimal effects on normal cells. Jasplakinolide combined with electric pulses can specifically target cancer cells with less cytotoxicity to normal cells, potentially reducing side effects following the clinical procedure.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.