{"title":"Fractional stochastic volatility model","authors":"Shuping Shi, Xiaobin Liu, Jun Yu","doi":"10.1111/jtsa.12749","DOIUrl":null,"url":null,"abstract":"<p>This article introduces a discrete-time fractional stochastic volatility model (FSV) based on fractional Gaussian noise. The new model includes the standard stochastic volatility model as a special case and has the same limit as the fractional integrated stochastic volatility (FISV) model, which is the continuous-time fractional Ornstein–Uhlenbeck process. A simulated maximum likelihood method, which maximizes the time-domain log-likelihood function calculated by the importance sampling technique, and a frequency-domain quasi maximum likelihood method (or quasi Whittle) are employed to estimate the model parameters. Simulation studies suggest that, while both estimation methods can accurately estimate the model, the simulated maximum likelihood method outperforms the quasi Whittle method. As an illustration, we fit the FSV and FISV models with the proposed estimation techniques to the S&P 500 composite index over a sample period spanning 45 years.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"46 2","pages":"378-397"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12749","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12749","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This article introduces a discrete-time fractional stochastic volatility model (FSV) based on fractional Gaussian noise. The new model includes the standard stochastic volatility model as a special case and has the same limit as the fractional integrated stochastic volatility (FISV) model, which is the continuous-time fractional Ornstein–Uhlenbeck process. A simulated maximum likelihood method, which maximizes the time-domain log-likelihood function calculated by the importance sampling technique, and a frequency-domain quasi maximum likelihood method (or quasi Whittle) are employed to estimate the model parameters. Simulation studies suggest that, while both estimation methods can accurately estimate the model, the simulated maximum likelihood method outperforms the quasi Whittle method. As an illustration, we fit the FSV and FISV models with the proposed estimation techniques to the S&P 500 composite index over a sample period spanning 45 years.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.