Balint Pato, Theerapat Tansuwannont, Shilin Huang, Kenneth R. Brown
{"title":"Optimization Tools for Distance-Preserving Flag Fault-Tolerant Error Correction","authors":"Balint Pato, Theerapat Tansuwannont, Shilin Huang, Kenneth R. Brown","doi":"10.1103/prxquantum.5.020336","DOIUrl":null,"url":null,"abstract":"Lookup-table decoding is fast and distance preserving, making it attractive for near-term quantum computer architectures with small-distance quantum error-correcting codes. In this work, we develop several optimization tools that can potentially reduce the space and time overhead required for flag fault-tolerant quantum error correction (FTQEC) with lookup-table decoding on Calderbank-Shor-Steane (CSS) codes. Our techniques include the compact lookup-table construction, the meet-in-the-middle technique, the adaptive time decoding for flag FTQEC, the classical processing technique for flag information, and the separate <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math>- and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Z</mi></math>-counting technique. We evaluate the performance of our tools using numerical simulation of hexagonal color codes of distances 3, 5, 7, and 9 under circuit-level noise. Combining all tools can result in an increase of more than an order of magnitude in the pseudothreshold for the hexagonal color code of distance 9, from <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>1.34</mn><mo>±</mo><mn>0.01</mn><mo stretchy=\"false\">)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></math> to <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>1.43</mn><mo>±</mo><mn>0.07</mn><mo stretchy=\"false\">)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></math>.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lookup-table decoding is fast and distance preserving, making it attractive for near-term quantum computer architectures with small-distance quantum error-correcting codes. In this work, we develop several optimization tools that can potentially reduce the space and time overhead required for flag fault-tolerant quantum error correction (FTQEC) with lookup-table decoding on Calderbank-Shor-Steane (CSS) codes. Our techniques include the compact lookup-table construction, the meet-in-the-middle technique, the adaptive time decoding for flag FTQEC, the classical processing technique for flag information, and the separate - and -counting technique. We evaluate the performance of our tools using numerical simulation of hexagonal color codes of distances 3, 5, 7, and 9 under circuit-level noise. Combining all tools can result in an increase of more than an order of magnitude in the pseudothreshold for the hexagonal color code of distance 9, from to .