{"title":"Progress in Superconductor-Semiconductor Topological Josephson Junctions","authors":"William F. Schiela, Peng Yu, Javad Shabani","doi":"10.1103/prxquantum.5.030102","DOIUrl":null,"url":null,"abstract":"Majorana bound states (MBSs) are quasiparticles that are their own antiparticles. They are predicted to emerge as zero-energy modes localized at the boundary of a topological superconductor. No intrinsic topological superconductor is known to date. However, by interfacing conventional superconductors and semiconductors with strong spin-orbit coupling, it is possible to create a system hosting topological states. Hence, epitaxial superconductors and semiconductors have emerged as an attractive material system with atomically sharp interfaces and broad flexibility in device fabrications incorporating Josephson junctions. We discuss the basics of topological superconductivity and provide insight into how to go beyond current state-of-the-art experiments. We argue that the ultimate success in realizing MBS physics requires the observation of non-Abelian braiding and fusion experiments.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Majorana bound states (MBSs) are quasiparticles that are their own antiparticles. They are predicted to emerge as zero-energy modes localized at the boundary of a topological superconductor. No intrinsic topological superconductor is known to date. However, by interfacing conventional superconductors and semiconductors with strong spin-orbit coupling, it is possible to create a system hosting topological states. Hence, epitaxial superconductors and semiconductors have emerged as an attractive material system with atomically sharp interfaces and broad flexibility in device fabrications incorporating Josephson junctions. We discuss the basics of topological superconductivity and provide insight into how to go beyond current state-of-the-art experiments. We argue that the ultimate success in realizing MBS physics requires the observation of non-Abelian braiding and fusion experiments.