Pub Date : 2024-09-19DOI: 10.1103/prxquantum.5.030353
Eric Hyyppä, Antti Vepsäläinen, Miha Papič, Chun Fai Chan, Sinan Inel, Alessandro Landra, Wei Liu, Jürgen Luus, Fabian Marxer, Caspar Ockeloen-Korppi, Sebastian Orbell, Brian Tarasinski, Johannes Heinsoo
Improving the speed and fidelity of quantum logic gates is essential to reach quantum advantage with future quantum computers. However, fast logic gates lead to increased leakage errors in superconducting quantum processors based on qubits with low anharmonicity, such as transmons. To reduce leakage errors, we propose and experimentally demonstrate two new analytical methods, Fourier ansatz spectrum tuning derivative removal by adiabatic gate (FAST DRAG) and higher-derivative (HD) DRAG, both of which enable shaping single-qubit control pulses in the frequency domain to achieve stronger suppression of leakage transitions compared to previously demonstrated pulse shapes. Using the new methods to suppress the transition of a transmon qubit with an anharmonicity of MHz, we implement gates achieving a leakage error below down to a gate duration of 6.25 ns without the need for iterative closed-loop optimization. The obtained leakage error represents a 20-fold reduction in leakage compared to a conventional cosine DRAG pulse. Employing the FAST DRAG method, we further achieve an error per gate of at a 7.9-ns gate duration, outperforming conventional pulse shapes both in terms of error and gate speed. Furthermore, we study error-amplifying measurements for the characterization of temporal microwave control-pulse distortions, and demonstrate that non-Markovian coherent errors caused by such distortions may be a significant source of error for sub-10-ns single-qubit gates unless corrected using predistortion.
{"title":"Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes","authors":"Eric Hyyppä, Antti Vepsäläinen, Miha Papič, Chun Fai Chan, Sinan Inel, Alessandro Landra, Wei Liu, Jürgen Luus, Fabian Marxer, Caspar Ockeloen-Korppi, Sebastian Orbell, Brian Tarasinski, Johannes Heinsoo","doi":"10.1103/prxquantum.5.030353","DOIUrl":"https://doi.org/10.1103/prxquantum.5.030353","url":null,"abstract":"Improving the speed and fidelity of quantum logic gates is essential to reach quantum advantage with future quantum computers. However, fast logic gates lead to increased leakage errors in superconducting quantum processors based on qubits with low anharmonicity, such as transmons. To reduce leakage errors, we propose and experimentally demonstrate two new analytical methods, Fourier ansatz spectrum tuning derivative removal by adiabatic gate (FAST DRAG) and higher-derivative (HD) DRAG, both of which enable shaping single-qubit control pulses in the frequency domain to achieve stronger suppression of leakage transitions compared to previously demonstrated pulse shapes. Using the new methods to suppress the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>e</mi><mi>f</mi></math> transition of a transmon qubit with an anharmonicity of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>−</mo><mn>212</mn></math> MHz, we implement <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>R</mi><mi>X</mi></msub><mo stretchy=\"false\">(</mo><mi>π</mi><mo>/</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math> gates achieving a leakage error below <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3.0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math> down to a gate duration of 6.25 ns without the need for iterative closed-loop optimization. The obtained leakage error represents a 20-fold reduction in leakage compared to a conventional cosine DRAG pulse. Employing the FAST DRAG method, we further achieve an error per gate of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>1.56</mn><mo>±</mo><mn>0.07</mn><mo stretchy=\"false\">)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></math> at a 7.9-ns gate duration, outperforming conventional pulse shapes both in terms of error and gate speed. Furthermore, we study error-amplifying measurements for the characterization of temporal microwave control-pulse distortions, and demonstrate that non-Markovian coherent errors caused by such distortions may be a significant source of error for sub-10-ns single-qubit gates unless corrected using predistortion.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1103/prxquantum.5.030201
Stefano Gherardini, Gabriele De Chiara
In this tutorial, we present the definition, interpretation, and properties of some of the main quasiprobabilities that can describe the statistics of measurement outcomes evaluated at two or more times. Such statistics incorporate the incompatibility of the measurement observables and the state of the measured quantum system. We particularly focus on Kirkwood-Dirac quasiprobabilities and related distributions. We also discuss techniques to experimentally access a quasiprobability distribution, ranging from the weak two-point measurement scheme, to a Ramsey-like interferometric scheme and procedures assisted by an external detector. Once defined the fundamental concepts following the standpoint of joint measurability in quantum mechanics, we illustrate the use of quasiprobabilities in quantum thermodynamics to describe the quantum statistics of work and heat, and to explain anomalies in the energy exchanges entailed by a given thermodynamic transformation. On the one hand, in work protocols, we show how absorbed energy can be converted to extractable work and vice versa due to Hamiltonian incompatibility at distinct times. On the other hand, in exchange processes between two quantum systems initially at different temperatures, we explain how quantum correlations in their initial state may induce cold-to-hot energy exchanges, which are unnatural between any pair of equilibrium nondriven systems. We conclude the tutorial by giving simple examples where quasiprobabilities are applied to many-body systems: scrambling of quantum information, sensitivity to local perturbations, and quantum work statistics in the quenched dynamics of models that can be mapped onto systems of free fermions, for instance, the Ising model with a transverse field. Throughout the tutorial, we meticulously present derivations of essential concepts alongside straightforward examples, aiming to enhance comprehension and facilitate learning.
{"title":"Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems","authors":"Stefano Gherardini, Gabriele De Chiara","doi":"10.1103/prxquantum.5.030201","DOIUrl":"https://doi.org/10.1103/prxquantum.5.030201","url":null,"abstract":"In this tutorial, we present the definition, interpretation, and properties of some of the main quasiprobabilities that can describe the statistics of measurement outcomes evaluated at two or more times. Such statistics incorporate the incompatibility of the measurement observables and the state of the measured quantum system. We particularly focus on Kirkwood-Dirac quasiprobabilities and related distributions. We also discuss techniques to experimentally access a quasiprobability distribution, ranging from the weak two-point measurement scheme, to a Ramsey-like interferometric scheme and procedures assisted by an external detector. Once defined the fundamental concepts following the standpoint of joint measurability in quantum mechanics, we illustrate the use of quasiprobabilities in quantum thermodynamics to describe the quantum statistics of work and heat, and to explain anomalies in the energy exchanges entailed by a given thermodynamic transformation. On the one hand, in work protocols, we show how absorbed energy can be converted to extractable work and vice versa due to Hamiltonian incompatibility at distinct times. On the other hand, in exchange processes between two quantum systems initially at different temperatures, we explain how quantum correlations in their initial state may induce cold-to-hot energy exchanges, which are unnatural between any pair of equilibrium nondriven systems. We conclude the tutorial by giving simple examples where quasiprobabilities are applied to many-body systems: scrambling of quantum information, sensitivity to local perturbations, and quantum work statistics in the quenched dynamics of models that can be mapped onto systems of free fermions, for instance, the Ising model with a transverse field. Throughout the tutorial, we meticulously present derivations of essential concepts alongside straightforward examples, aiming to enhance comprehension and facilitate learning.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1103/prxquantum.5.030352
Yugo Takada, Keisuke Fujii
Color codes are promising quantum error-correction (QEC) codes because they have an advantage over surface codes in that all Clifford gates can be implemented transversally. However, the thresholds of color codes under circuit-level noise are relatively low, mainly because measurements of their high-weight stabilizer generators cause an increase in the circuit depth and, thus, substantial errors are introduced. This makes color codes not the best candidate for fault-tolerant quantum computing. Here, we propose a method to suppress the impact of such errors by optimizing weights of decoders using conditional error probabilities conditioned on the measurement outcomes of flag qubits. In numerical simulations, we improve the threshold of the (4.8.8) color code under circuit-level noise from 0.14% to around 0.27%, which is calculated by using an integer programming decoder. Furthermore, in the (6.6.6) color code, we achieve a circuit-level threshold of around 0.36%, which is almost the same value as the highest value in the previous studies employing the same noise model. In both cases, the effective code distance is also improved compared to a conventional method that uses a single ancilla qubit for each stabilizer measurement. Thereby, the achieved logical error rates at low physical error rates are almost one order of magnitude lower than those of the conventional method with the same code distance. Even when compared to the single-ancilla method with a higher code distance, considering the increased number of qubits used in our method, we achieve lower logical error rates in most cases. This method can also be applied to other weight-based decoders, making the color codes more promising as candidates for the experimental implementation of QEC. Furthermore, one can utilize this approach to improve a threshold of wider classes of QEC codes, such as high-rate quantum low-density parity-check codes.
{"title":"Improving Threshold for Fault-Tolerant Color-Code Quantum Computing by Flagged Weight Optimization","authors":"Yugo Takada, Keisuke Fujii","doi":"10.1103/prxquantum.5.030352","DOIUrl":"https://doi.org/10.1103/prxquantum.5.030352","url":null,"abstract":"Color codes are promising quantum error-correction (QEC) codes because they have an advantage over surface codes in that all Clifford gates can be implemented transversally. However, the thresholds of color codes under circuit-level noise are relatively low, mainly because measurements of their high-weight stabilizer generators cause an increase in the circuit depth and, thus, substantial errors are introduced. This makes color codes not the best candidate for fault-tolerant quantum computing. Here, we propose a method to suppress the impact of such errors by optimizing weights of decoders using conditional error probabilities conditioned on the measurement outcomes of flag qubits. In numerical simulations, we improve the threshold of the (4.8.8) color code under circuit-level noise from 0.14% to around 0.27%, which is calculated by using an integer programming decoder. Furthermore, in the (6.6.6) color code, we achieve a circuit-level threshold of around 0.36%, which is almost the same value as the highest value in the previous studies employing the same noise model. In both cases, the effective code distance is also improved compared to a conventional method that uses a single ancilla qubit for each stabilizer measurement. Thereby, the achieved logical error rates at low physical error rates are almost one order of magnitude lower than those of the conventional method with the same code distance. Even when compared to the single-ancilla method with a higher code distance, considering the increased number of qubits used in our method, we achieve lower logical error rates in most cases. This method can also be applied to other weight-based decoders, making the color codes more promising as candidates for the experimental implementation of QEC. Furthermore, one can utilize this approach to improve a threshold of wider classes of QEC codes, such as high-rate quantum low-density parity-check codes.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1103/prxquantum.5.030102
William F. Schiela, Peng Yu, Javad Shabani
Majorana bound states (MBSs) are quasiparticles that are their own antiparticles. They are predicted to emerge as zero-energy modes localized at the boundary of a topological superconductor. No intrinsic topological superconductor is known to date. However, by interfacing conventional superconductors and semiconductors with strong spin-orbit coupling, it is possible to create a system hosting topological states. Hence, epitaxial superconductors and semiconductors have emerged as an attractive material system with atomically sharp interfaces and broad flexibility in device fabrications incorporating Josephson junctions. We discuss the basics of topological superconductivity and provide insight into how to go beyond current state-of-the-art experiments. We argue that the ultimate success in realizing MBS physics requires the observation of non-Abelian braiding and fusion experiments.
{"title":"Progress in Superconductor-Semiconductor Topological Josephson Junctions","authors":"William F. Schiela, Peng Yu, Javad Shabani","doi":"10.1103/prxquantum.5.030102","DOIUrl":"https://doi.org/10.1103/prxquantum.5.030102","url":null,"abstract":"Majorana bound states (MBSs) are quasiparticles that are their own antiparticles. They are predicted to emerge as zero-energy modes localized at the boundary of a topological superconductor. No intrinsic topological superconductor is known to date. However, by interfacing conventional superconductors and semiconductors with strong spin-orbit coupling, it is possible to create a system hosting topological states. Hence, epitaxial superconductors and semiconductors have emerged as an attractive material system with atomically sharp interfaces and broad flexibility in device fabrications incorporating Josephson junctions. We discuss the basics of topological superconductivity and provide insight into how to go beyond current state-of-the-art experiments. We argue that the ultimate success in realizing MBS physics requires the observation of non-Abelian braiding and fusion experiments.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1103/prxquantum.5.030351
Zhenfei Jiang, Tian Li, Matthew L. Boone, Zhenhuan Yi, Alexei V. Sokolov, Girish S. Agarwal, Marlan O. Scully
Strong quantum correlated sources are essential but delicate resources for quantum information science and engineering protocols. Decoherence and loss are the two main disruptive processes that lead to the loss of nonclassical behavior in quantum correlations. In quantum systems, scattering can contribute to both decoherence and loss. In this work, we present an experimental scheme capable of significantly mitigating the adverse impact of scattering in quantum systems. Our quantum system is composed of a two-mode squeezed light generated with the four-wave-mixing process in hot rubidium vapor and a scatterer is introduced to one of the two modes. An integrating sphere is then placed after the scatterer to recollect the scattered photons. We use mutual information between the two modes as the measure of quantum correlations and demonstrate a 47.5% mutual information recovery from scattering, despite an enormous photon loss of greater than 85%. Our scheme is the very first step toward recovering quantum correlations from disruptive random processes and thus has the potential to bridge the gap between proof-of-principle demonstrations and practical real-world implementations of quantum protocols.
{"title":"Mitigating Scattering in a Quantum System Using Only an Integrating Sphere","authors":"Zhenfei Jiang, Tian Li, Matthew L. Boone, Zhenhuan Yi, Alexei V. Sokolov, Girish S. Agarwal, Marlan O. Scully","doi":"10.1103/prxquantum.5.030351","DOIUrl":"https://doi.org/10.1103/prxquantum.5.030351","url":null,"abstract":"Strong quantum correlated sources are essential but delicate resources for quantum information science and engineering protocols. Decoherence and loss are the two main disruptive processes that lead to the loss of nonclassical behavior in quantum correlations. In quantum systems, scattering can contribute to both decoherence and loss. In this work, we present an experimental scheme capable of significantly mitigating the adverse impact of scattering in quantum systems. Our quantum system is composed of a two-mode squeezed light generated with the four-wave-mixing process in hot rubidium vapor and a scatterer is introduced to one of the two modes. An integrating sphere is then placed after the scatterer to recollect the scattered photons. We use mutual information between the two modes as the measure of quantum correlations and demonstrate a 47.5% mutual information recovery from scattering, despite an enormous photon loss of greater than 85%. Our scheme is the very first step toward recovering quantum correlations from disruptive random processes and thus has the potential to bridge the gap between proof-of-principle demonstrations and practical real-world implementations of quantum protocols.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1103/prxquantum.5.030350
Sandoko Kosen, Hang-Xi Li, Marcus Rommel, Robert Rehammar, Marco Caputo, Leif Grönberg, Jorge Fernández-Pendás, Anton Frisk Kockum, Janka Biznárová, Liangyu Chen, Christian Križan, Andreas Nylander, Amr Osman, Anita Fadavi Roudsari, Daryoush Shiri, Giovanna Tancredi, Joonas Govenius, Jonas Bylander
Quantum processors require a signal-delivery architecture with high addressability (low crosstalk) to ensure high performance already at the scale of dozens of qubits. Signal crosstalk causes inadvertent driving of quantum gates, which will adversely affect quantum gate fidelities in scaled-up devices. Here, we demonstrate packaged flip-chip superconducting quantum processors with signal-crosstalk performance competitive with those reported in other platforms. For capacitively coupled qubit-drive lines, we find on-resonant crosstalk better than dB (average dB). For inductively coupled magnetic-flux-drive lines, we find less than 0.13% direct-current flux crosstalk (average 0.05%). These observed crosstalk levels are adequately small and indicate a decreasing trend with increasing distance, which is promising for further scaling up to larger numbers of qubits. We discuss the implications of our results for the design of a low-crosstalk on-chip signal-delivery architecture, including the influence of a shielding tunnel structure, potential sources of crosstalk, and estimation of crosstalk-induced qubit-gate error in scaled-up quantum processors.
{"title":"Signal Crosstalk in a Flip-Chip Quantum Processor","authors":"Sandoko Kosen, Hang-Xi Li, Marcus Rommel, Robert Rehammar, Marco Caputo, Leif Grönberg, Jorge Fernández-Pendás, Anton Frisk Kockum, Janka Biznárová, Liangyu Chen, Christian Križan, Andreas Nylander, Amr Osman, Anita Fadavi Roudsari, Daryoush Shiri, Giovanna Tancredi, Joonas Govenius, Jonas Bylander","doi":"10.1103/prxquantum.5.030350","DOIUrl":"https://doi.org/10.1103/prxquantum.5.030350","url":null,"abstract":"Quantum processors require a signal-delivery architecture with high addressability (low crosstalk) to ensure high performance already at the scale of dozens of qubits. Signal crosstalk causes inadvertent driving of quantum gates, which will adversely affect quantum gate fidelities in scaled-up devices. Here, we demonstrate packaged flip-chip superconducting quantum processors with signal-crosstalk performance competitive with those reported in other platforms. For capacitively coupled qubit-drive lines, we find on-resonant crosstalk better than <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>−</mo><mn>27</mn></math> dB (average <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>−</mo><mn>37</mn></math> dB). For inductively coupled magnetic-flux-drive lines, we find less than 0.13% direct-current flux crosstalk (average 0.05%). These observed crosstalk levels are adequately small and indicate a decreasing trend with increasing distance, which is promising for further scaling up to larger numbers of qubits. We discuss the implications of our results for the design of a low-crosstalk on-chip signal-delivery architecture, including the influence of a shielding tunnel structure, potential sources of crosstalk, and estimation of crosstalk-induced qubit-gate error in scaled-up quantum processors.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1103/prxquantum.5.030349
R. Veyron, J-B. Gerent, G. Baclet, V. Mancois, P. Bouyer, S. Bernon
In this work, we implement a new method for imaging ultracold atoms with subwavelength resolution capabilities and determine its regime of validity. It uses the laser-driven interaction between excited states to engineer hyperfine ground-state population transfer in a three-level system on scales much smaller than the optical resolution. Subwavelength imaging of a quantum gas is atypical in the sense that the measurement itself perturbs the dynamics of the system. To avoid induced dynamics affecting the measurement, one usually “rapidly” measures the wave function in a so-called strong imaging regime. We experimentally illustrate this regime using a thermal gas ensemble, and demonstrate subwavelength resolution in quantitative agreement with a fully analytical model. Additionally, we show that, counterintuitively, the opposite weak imaging regime can also be exploited to reach subwavelength resolution. As a proof of concept, we demonstrate that this regime is a robust solution to select and spatially resolve a 30-nm-wide wave function, which was created and singled out from a tightly confined one-dimensional optical lattice. Using a general dissipation-included formalism, we derive validity criteria for both regimes. The formalism is applicable to other subwavelength methods.
{"title":"In Situ Subwavelength Microscopy of Ultracold Atoms Using Dressed Excited States","authors":"R. Veyron, J-B. Gerent, G. Baclet, V. Mancois, P. Bouyer, S. Bernon","doi":"10.1103/prxquantum.5.030349","DOIUrl":"https://doi.org/10.1103/prxquantum.5.030349","url":null,"abstract":"In this work, we implement a new method for imaging ultracold atoms with subwavelength resolution capabilities and determine its regime of validity. It uses the laser-driven interaction between excited states to engineer hyperfine ground-state population transfer in a three-level system on scales much smaller than the optical resolution. Subwavelength imaging of a quantum gas is atypical in the sense that the measurement itself perturbs the dynamics of the system. To avoid induced dynamics affecting the measurement, one usually “rapidly” measures the wave function in a so-called strong imaging regime. We experimentally illustrate this regime using a thermal gas ensemble, and demonstrate subwavelength resolution in quantitative agreement with a fully analytical model. Additionally, we show that, counterintuitively, the opposite weak imaging regime can also be exploited to reach subwavelength resolution. As a proof of concept, we demonstrate that this regime is a robust solution to select and spatially resolve a 30-nm-wide wave function, which was created and singled out from a tightly confined one-dimensional optical lattice. Using a general dissipation-included formalism, we derive validity criteria for both regimes. The formalism is applicable to other subwavelength methods.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1103/prxquantum.5.030348
Sami Boulebnane, Ashley Montanaro
One of the most prominent application areas for quantum computers is solving hard constraint satisfaction and optimization problems. However, detailed analyses of the complexity of standard quantum algorithms have suggested that outperforming classical methods for these problems would require extremely large and powerful quantum computers. The quantum approximate optimization algorithm (QAOA) is designed for near-term quantum computers, yet previous work has shown strong limitations on the ability of QAOA to outperform classical algorithms for optimization problems. Here we instead apply QAOA to hard constraint satisfaction problems, where both classical and quantum algorithms are expected to require exponential time. We analytically characterize the average success probability of QAOA on a constraint satisfaction problem commonly studied using statistical physics methods: random -SAT at the threshold for satisfiability, as the number of variables goes to infinity. We complement these theoretical results with numerical experiments on the performance of QAOA for small , which match the limiting theoretical bounds closely. We then compare QAOA with leading classical solvers. For random 8-SAT, we find that for more than 14 quantum circuit layers, QAOA achieves more efficient scaling than the highest-performance classical solver we tested, WalkSATlm. Our results suggest that near-term quantum algorithms for solving constraint satisfaction problems may outperform their classical counterparts.
{"title":"Solving Boolean Satisfiability Problems With The Quantum Approximate Optimization Algorithm","authors":"Sami Boulebnane, Ashley Montanaro","doi":"10.1103/prxquantum.5.030348","DOIUrl":"https://doi.org/10.1103/prxquantum.5.030348","url":null,"abstract":"One of the most prominent application areas for quantum computers is solving hard constraint satisfaction and optimization problems. However, detailed analyses of the complexity of standard quantum algorithms have suggested that outperforming classical methods for these problems would require extremely large and powerful quantum computers. The quantum approximate optimization algorithm (QAOA) is designed for near-term quantum computers, yet previous work has shown strong limitations on the ability of QAOA to outperform classical algorithms for optimization problems. Here we instead apply QAOA to hard constraint satisfaction problems, where both classical and quantum algorithms are expected to require exponential time. We analytically characterize the average success probability of QAOA on a constraint satisfaction problem commonly studied using statistical physics methods: random <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-SAT at the threshold for satisfiability, as the number of variables <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> goes to infinity. We complement these theoretical results with numerical experiments on the performance of QAOA for small <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>, which match the limiting theoretical bounds closely. We then compare QAOA with leading classical solvers. For random 8-SAT, we find that for more than 14 quantum circuit layers, QAOA achieves more efficient scaling than the highest-performance classical solver we tested, WalkSATlm. Our results suggest that near-term quantum algorithms for solving constraint satisfaction problems may outperform their classical counterparts.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1103/prxquantum.5.030347
Alexander Anferov, Shannon P. Harvey, Fanghui Wan, Jonathan Simon, David I. Schuster
Current state-of-the-art superconducting microwave qubits are cooled to extremely low temperatures to avoid sources of decoherence. Higher qubit operating temperatures would significantly increase the cooling power available, which is desirable for scaling up the number of qubits in quantum computing architectures and integrating qubits in experiments requiring increased heat dissipation. To operate superconducting qubits at higher temperatures, it is necessary to address both quasiparticle decoherence (which becomes significant for aluminum junctions above 160 mK) and dephasing from thermal microwave photons (which are problematic above 50 mK). Using low-loss niobium-trilayer junctions, which have reduced sensitivity to quasiparticles due to the higher superconducting transition temperature of niobium, we fabricate transmons with higher frequencies than previously studied, up to 24 GHz. We measure decoherence and dephasing times of about , corresponding to average qubit quality factors of approximately , and find that decoherence is unaffected by quasiparticles up to . Without relaxation from quasiparticles, we are able to explore dephasing from purely thermal sources, finding that our qubits can operate up to approximately while maintaining similar performance. The thermal resilience of these qubits creates new options for scaling up quantum processors, enables hybrid quantum experiments with high heat-dissipation budgets, and introduces a material platform for even-higher-frequency qubits.
{"title":"Superconducting Qubits above 20 GHz Operating over 200 mK","authors":"Alexander Anferov, Shannon P. Harvey, Fanghui Wan, Jonathan Simon, David I. Schuster","doi":"10.1103/prxquantum.5.030347","DOIUrl":"https://doi.org/10.1103/prxquantum.5.030347","url":null,"abstract":"Current state-of-the-art superconducting microwave qubits are cooled to extremely low temperatures to avoid sources of decoherence. Higher qubit operating temperatures would significantly increase the cooling power available, which is desirable for scaling up the number of qubits in quantum computing architectures and integrating qubits in experiments requiring increased heat dissipation. To operate superconducting qubits at higher temperatures, it is necessary to address both quasiparticle decoherence (which becomes significant for aluminum junctions above 160 mK) and dephasing from thermal microwave photons (which are problematic above 50 mK). Using low-loss niobium-trilayer junctions, which have reduced sensitivity to quasiparticles due to the higher superconducting transition temperature of niobium, we fabricate transmons with higher frequencies than previously studied, up to 24 GHz. We measure decoherence and dephasing times of about <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mspace width=\"0.2em\"></mspace><mtext fontfamily=\"times\">μ</mtext><mrow><mi mathvariant=\"normal\">s</mi></mrow></math>, corresponding to average qubit quality factors of approximately <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>5</mn></msup></math>, and find that decoherence is unaffected by quasiparticles up to <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mspace width=\"0.2em\"></mspace><mrow><mi mathvariant=\"normal\">K</mi></mrow></math>. Without relaxation from quasiparticles, we are able to explore dephasing from purely thermal sources, finding that our qubits can operate up to approximately <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>250</mn><mspace width=\"0.2em\"></mspace><mi>mK</mi></math> while maintaining similar performance. The thermal resilience of these qubits creates new options for scaling up quantum processors, enables hybrid quantum experiments with high heat-dissipation budgets, and introduces a material platform for even-higher-frequency qubits.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1103/prxquantum.5.030346
Parth S. Shah, Frank Yang, Chaitali Joshi, Mohammad Mirhosseini
Distributing entanglement between remote sites is integral to quantum networks. Here, we demonstrate the autonomous stabilization of remote entanglement between a pair of noninteracting superconducting qubits connected by an open waveguide on a chip. In this setting, the interplay between a classical continuous drive—supplied through the waveguide—and dissipation into the waveguide stabilizes the qubit pair in a dark state, which, asymptotically, takes the form of a Bell state. We use field-quadrature measurements of the photons emitted to the waveguide to perform quantum state tomography on the stabilized states, where we find a concurrence of in the optimal setting with a stabilization time constant of ns. We examine the imperfections within our system and discuss avenues for enhancing fidelities and achieving scalability in future work. The decoherence-protected steady-state remote entanglement offered via dissipative stabilization may find applications in distributed quantum computing, sensing, and communication.
{"title":"Stabilizing Remote Entanglement via Waveguide Dissipation","authors":"Parth S. Shah, Frank Yang, Chaitali Joshi, Mohammad Mirhosseini","doi":"10.1103/prxquantum.5.030346","DOIUrl":"https://doi.org/10.1103/prxquantum.5.030346","url":null,"abstract":"Distributing entanglement between remote sites is integral to quantum networks. Here, we demonstrate the autonomous stabilization of remote entanglement between a pair of noninteracting superconducting qubits connected by an open waveguide on a chip. In this setting, the interplay between a classical continuous drive—supplied through the waveguide—and dissipation into the waveguide stabilizes the qubit pair in a dark state, which, asymptotically, takes the form of a Bell state. We use field-quadrature measurements of the photons emitted to the waveguide to perform quantum state tomography on the stabilized states, where we find a concurrence of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mn>0.504</mn><mrow><mo>−</mo><mn>0.029</mn></mrow><mrow><mo>+</mo><mn>0.007</mn></mrow></msubsup></math> in the optimal setting with a stabilization time constant of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>56</mn><mo>±</mo><mn>4</mn></math> ns. We examine the imperfections within our system and discuss avenues for enhancing fidelities and achieving scalability in future work. The decoherence-protected steady-state remote entanglement offered via dissipative stabilization may find applications in distributed quantum computing, sensing, and communication.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"87 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}