Sufficient Condition for Universal Quantum Computation Using Bosonic Circuits

Cameron Calcluth, Nicolas Reichel, Alessandro Ferraro, Giulia Ferrini
{"title":"Sufficient Condition for Universal Quantum Computation Using Bosonic Circuits","authors":"Cameron Calcluth, Nicolas Reichel, Alessandro Ferraro, Giulia Ferrini","doi":"10.1103/prxquantum.5.020337","DOIUrl":null,"url":null,"abstract":"Continuous-variable bosonic systems stand as prominent candidates for implementing quantum computational tasks. While various necessary criteria have been established to assess their resourcefulness, sufficient conditions have remained elusive. We address this gap by focusing on promoting circuits that are otherwise simulatable to computational universality. The class of simulatable, albeit non-Gaussian, circuits that we consider is composed of Gottesman-Kitaev-Preskill (GKP) states, Gaussian operations, and homodyne measurements. Based on these circuits, we first introduce a general framework for mapping a continuous-variable state into a qubit state. Subsequently, we cast existing maps into this framework, including the modular and stabilizer subsystem decompositions. By combining these findings with established results for discrete-variable systems, we formulate a sufficient condition for achieving universal quantum computation. Leveraging this, we evaluate the computational resourcefulness of a variety of states, including Gaussian states, finite-squeezing GKP states, and cat states. Furthermore, our framework reveals that both the stabilizer subsystem decomposition and the modular subsystem decomposition (of position-symmetric states) can be constructed in terms of simulatable operations. This establishes a robust resource-theoretical foundation for employing these techniques to evaluate the logical content of a generic continuous-variable state, which can be of independent interest.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous-variable bosonic systems stand as prominent candidates for implementing quantum computational tasks. While various necessary criteria have been established to assess their resourcefulness, sufficient conditions have remained elusive. We address this gap by focusing on promoting circuits that are otherwise simulatable to computational universality. The class of simulatable, albeit non-Gaussian, circuits that we consider is composed of Gottesman-Kitaev-Preskill (GKP) states, Gaussian operations, and homodyne measurements. Based on these circuits, we first introduce a general framework for mapping a continuous-variable state into a qubit state. Subsequently, we cast existing maps into this framework, including the modular and stabilizer subsystem decompositions. By combining these findings with established results for discrete-variable systems, we formulate a sufficient condition for achieving universal quantum computation. Leveraging this, we evaluate the computational resourcefulness of a variety of states, including Gaussian states, finite-squeezing GKP states, and cat states. Furthermore, our framework reveals that both the stabilizer subsystem decomposition and the modular subsystem decomposition (of position-symmetric states) can be constructed in terms of simulatable operations. This establishes a robust resource-theoretical foundation for employing these techniques to evaluate the logical content of a generic continuous-variable state, which can be of independent interest.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用玻色电路进行通用量子计算的充分条件
连续可变玻色系统是实现量子计算任务的重要候选系统。虽然已经建立了各种必要标准来评估它们的资源性,但充分条件仍然难以捉摸。为了弥补这一不足,我们重点研究了可模拟计算普遍性的电路。我们考虑的这一类可模拟电路(尽管不是高斯电路)由戈特斯曼-基塔埃夫-普雷斯基尔(GKP)状态、高斯运算和同调测量组成。基于这些电路,我们首先介绍了将连续可变状态映射为量子比特状态的一般框架。随后,我们将现有的映射(包括模块化和稳定器子系统分解)纳入这一框架。通过将这些发现与离散变量系统的既定结果相结合,我们提出了实现通用量子计算的充分条件。利用这一点,我们评估了各种状态的计算资源性,包括高斯状态、精细挤压 GKP 状态和猫状态。此外,我们的框架揭示了稳定子系统分解和模块子系统分解(位置对称态)都可以用可模拟运算来构建。这就为运用这些技术评估通用连续变量状态的逻辑内容奠定了坚实的资源理论基础,而这些技术可能具有独立的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems Improving Threshold for Fault-Tolerant Color-Code Quantum Computing by Flagged Weight Optimization Progress in Superconductor-Semiconductor Topological Josephson Junctions Mitigating Scattering in a Quantum System Using Only an Integrating Sphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1