Afforestation with an age-sequence of Mongolian pine plantation promotes soil microbial residue accumulation in the Horqin Sandy Land, China

IF 2.7 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Journal of Arid Land Pub Date : 2024-05-18 DOI:10.1007/s40333-024-0011-5
Jingwen Guo, Xueshu Song, Xiao Wang, Zhangliu Du, Sen Lu
{"title":"Afforestation with an age-sequence of Mongolian pine plantation promotes soil microbial residue accumulation in the Horqin Sandy Land, China","authors":"Jingwen Guo, Xueshu Song, Xiao Wang, Zhangliu Du, Sen Lu","doi":"10.1007/s40333-024-0011-5","DOIUrl":null,"url":null,"abstract":"<p>Land use change affects the balance of organic carbon (C) reserves and the global C cycle. Microbial residues are essential constituents of stable soil organic C (SOC). However, it remains unclear how microbial residue changes over time following afforestation. In this study, 16-, 23-, 52-, and 62-year-old Mongolian pine stands and 16-year-old cropland were studied in the Horqin Sandy Land, China. We analyzed changes in SOC, amino sugar content, and microbial parameters to assess how microbial communities influence soil C transformation and preservation. The results showed that SOC storage increased with stand age in the early stage of afforestation but remained unchanged at about 1.27–1.29 kg/m<sup>2</sup> after 52 a. Moreover, there were consistent increases in amino sugars and microbial residues with increasing stand age. As stand age increased from 16 to 62 a, soil pH decreased from 6.84 to 5.71, and the concentration of total amino sugars increased from 178.53 to 509.99 mg/kg. A significant negative correlation between soil pH and the concentration of specific and total amino sugars was observed, indicating that the effects of soil acidification promote amino sugar stabilization during afforestation. In contrast to the Mongolian pine plantation of the same age, the cropland accumulated more SOC and microbial residues because of fertilizer application. Across Mongolian pine plantation with different ages, there was no significant change in calculated contribution of bacterial or fungal residues to SOC, suggesting that fungi were consistently the dominant contributors to SOC with increasing time. Our results indicate that afforestation in the Horqin Sandy Land promotes efficient microbial growth and residue accumulation in SOC stocks and has a consistent positive impact on SOC persistence.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"51 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0011-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Land use change affects the balance of organic carbon (C) reserves and the global C cycle. Microbial residues are essential constituents of stable soil organic C (SOC). However, it remains unclear how microbial residue changes over time following afforestation. In this study, 16-, 23-, 52-, and 62-year-old Mongolian pine stands and 16-year-old cropland were studied in the Horqin Sandy Land, China. We analyzed changes in SOC, amino sugar content, and microbial parameters to assess how microbial communities influence soil C transformation and preservation. The results showed that SOC storage increased with stand age in the early stage of afforestation but remained unchanged at about 1.27–1.29 kg/m2 after 52 a. Moreover, there were consistent increases in amino sugars and microbial residues with increasing stand age. As stand age increased from 16 to 62 a, soil pH decreased from 6.84 to 5.71, and the concentration of total amino sugars increased from 178.53 to 509.99 mg/kg. A significant negative correlation between soil pH and the concentration of specific and total amino sugars was observed, indicating that the effects of soil acidification promote amino sugar stabilization during afforestation. In contrast to the Mongolian pine plantation of the same age, the cropland accumulated more SOC and microbial residues because of fertilizer application. Across Mongolian pine plantation with different ages, there was no significant change in calculated contribution of bacterial or fungal residues to SOC, suggesting that fungi were consistently the dominant contributors to SOC with increasing time. Our results indicate that afforestation in the Horqin Sandy Land promotes efficient microbial growth and residue accumulation in SOC stocks and has a consistent positive impact on SOC persistence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国科尔沁沙地蒙古松龄序造林促进土壤微生物残留积累
土地利用的变化会影响有机碳储量的平衡和全球碳循环。微生物残留物是稳定的土壤有机碳(SOC)的重要组成部分。然而,目前仍不清楚植树造林后微生物残留物会随着时间的推移发生怎样的变化。本研究在中国科尔沁沙地对 16、23、52 和 62 年树龄的蒙古松林和 16 年树龄的耕地进行了研究。我们分析了SOC、氨基酸糖含量和微生物参数的变化,以评估微生物群落如何影响土壤C的转化和保存。结果表明,造林初期 SOC 储量随林龄增加而增加,但在 52 a 后保持不变,约为 1.27-1.29 kg/m2。随着林龄从 16 a 增加到 62 a,土壤 pH 值从 6.84 降到 5.71,总氨基酸糖的浓度从 178.53 增加到 509.99 mg/kg。土壤 pH 值与特定氨基酸糖和总氨基酸糖的浓度之间呈明显的负相关,表明土壤酸化的影响促进了造林过程中氨基酸糖的稳定。与同龄的蒙古松人工林相比,耕地因施肥积累了更多的 SOC 和微生物残留物。在不同树龄的蒙古松植被中,细菌或真菌残留物对 SOC 的计算贡献率没有显著变化,这表明随着时间的推移,真菌始终是 SOC 的主要贡献者。我们的研究结果表明,科尔沁沙地的植树造林促进了微生物的高效生长和 SOC 储量中残留物的积累,并对 SOC 的持久性产生了持续的积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Arid Land
Journal of Arid Land ENVIRONMENTAL SCIENCES-
CiteScore
4.70
自引率
6.70%
发文量
768
审稿时长
3.2 months
期刊介绍: The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large. The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.
期刊最新文献
Predicting changes in the suitable habitats of six halophytic plant species in the arid areas of Northwest China Spatiotemporal landscape pattern changes and their effects on land surface temperature in greenbelt with semi-arid climate: A case study of the Erbil City, Iraq Impact of climate and human activity on NDVI of various vegetation types in the Three-River Source Region, China Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change Threshold friction velocity influenced by soil particle size within the Columbia Plateau, northwestern United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1