Robin Tenscher-Philipp, Tim Schanz, Fabian Harlacher, Benedikt Fautz, Martin Simon
{"title":"AI-Driven Synthetization Pipeline of Realistic 3D-CT Data for Industrial Defect Segmentation","authors":"Robin Tenscher-Philipp, Tim Schanz, Fabian Harlacher, Benedikt Fautz, Martin Simon","doi":"10.1007/s10921-024-01080-x","DOIUrl":null,"url":null,"abstract":"<div><p>Training data is crucial for any artificial intelligence model. Previous research has shown that various methods can be used to enhance and improve AI training data. Taking a step beyond previous research, this paper presents a method that uses AI techniques to generate CT training data, especially realistic, artificial, industrial 3D voxel data. This includes that material as well as realistic internal defects, like pores, are artificially generated. To automate the processes, the creation of the data is implemented in a 3D Data Generation, called SPARC (Synthetized Process Artificial Realistic CT data). The SPARC is built as a pipeline consisting of several steps where different types of AI fulfill different tasks in the process of generating synthetic data. One AI generates geometrically realistic internal defects. Another AI is used to generate a realistic 3D voxel representation. This involves a conversion from STL to voxel data and generating the gray values accordingly. By combining the different AI methods, the SPARC pipeline can generate realistic 3D voxel data with internal defects, addressing the lack of data for various applications. The data generated by SPARC achieved a structural similarity of 98% compared to the real data. Realistic 3D voxel training data can thus be generated. For future AI applications, annotations of various features can be created to be used in both supervised and unsupervised training.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-024-01080-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01080-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Training data is crucial for any artificial intelligence model. Previous research has shown that various methods can be used to enhance and improve AI training data. Taking a step beyond previous research, this paper presents a method that uses AI techniques to generate CT training data, especially realistic, artificial, industrial 3D voxel data. This includes that material as well as realistic internal defects, like pores, are artificially generated. To automate the processes, the creation of the data is implemented in a 3D Data Generation, called SPARC (Synthetized Process Artificial Realistic CT data). The SPARC is built as a pipeline consisting of several steps where different types of AI fulfill different tasks in the process of generating synthetic data. One AI generates geometrically realistic internal defects. Another AI is used to generate a realistic 3D voxel representation. This involves a conversion from STL to voxel data and generating the gray values accordingly. By combining the different AI methods, the SPARC pipeline can generate realistic 3D voxel data with internal defects, addressing the lack of data for various applications. The data generated by SPARC achieved a structural similarity of 98% compared to the real data. Realistic 3D voxel training data can thus be generated. For future AI applications, annotations of various features can be created to be used in both supervised and unsupervised training.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.