CNN-Based Similar Microwave Reflection Signals for Improved Detectability and Intelligent Characterization of Internal Defects in Composite Materials

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Journal of Nondestructive Evaluation Pub Date : 2025-02-09 DOI:10.1007/s10921-025-01163-3
Mingyu Gao, Liang Huo, Fei Wang, Peng Song, Yulong Gao, Guohui Yang, Junyan Liu, Zhipeng Liang, Yunji Xie, Yinghao Song
{"title":"CNN-Based Similar Microwave Reflection Signals for Improved Detectability and Intelligent Characterization of Internal Defects in Composite Materials","authors":"Mingyu Gao,&nbsp;Liang Huo,&nbsp;Fei Wang,&nbsp;Peng Song,&nbsp;Yulong Gao,&nbsp;Guohui Yang,&nbsp;Junyan Liu,&nbsp;Zhipeng Liang,&nbsp;Yunji Xie,&nbsp;Yinghao Song","doi":"10.1007/s10921-025-01163-3","DOIUrl":null,"url":null,"abstract":"<div><p>Near-field microwave imaging shows considerable promise for non-destructive evaluation of internal defects in high silica/phenolic composites, which are commonly used as thermal protection systems (TPS) for rocket/missile solid motor nozzles and space re-entry vehicles. However, effectively identifying defect features using post-processing algorithms remains challenging. To address this challenge, this paper proposes a microwave defect characterization algorithm based on Convolutional Neural Networks (CNN). A defect dataset derived from reflection microwave signals, was manually compiled by detecting samples with critical defects. The CNN framework was utilized for precise classification of microwave signals, employing a classification encoding strategy to extract two-dimensional defect information and achieve automatic localization and imaging of defects. Multiple deep learning models were compared in both simulations and experiments, revealing that the proposed CNN exhibited significant advantages in feature extraction, enabling highly effective identification of internal defects even with a limited dataset. Compared with traditional algorithms, the detection accuracy of the proposed 1D-SENet has been improved by 53.35% and 50.66%, respectively, and can achieve detection of defects with a minimum size of Φ6mm. These validate the effectiveness of algorithm in intelligent and automated microwave characterization of delamination defects within composite materials.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01163-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Near-field microwave imaging shows considerable promise for non-destructive evaluation of internal defects in high silica/phenolic composites, which are commonly used as thermal protection systems (TPS) for rocket/missile solid motor nozzles and space re-entry vehicles. However, effectively identifying defect features using post-processing algorithms remains challenging. To address this challenge, this paper proposes a microwave defect characterization algorithm based on Convolutional Neural Networks (CNN). A defect dataset derived from reflection microwave signals, was manually compiled by detecting samples with critical defects. The CNN framework was utilized for precise classification of microwave signals, employing a classification encoding strategy to extract two-dimensional defect information and achieve automatic localization and imaging of defects. Multiple deep learning models were compared in both simulations and experiments, revealing that the proposed CNN exhibited significant advantages in feature extraction, enabling highly effective identification of internal defects even with a limited dataset. Compared with traditional algorithms, the detection accuracy of the proposed 1D-SENet has been improved by 53.35% and 50.66%, respectively, and can achieve detection of defects with a minimum size of Φ6mm. These validate the effectiveness of algorithm in intelligent and automated microwave characterization of delamination defects within composite materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
期刊最新文献
Study on the Distribution Patterns of Temperature Fields and Thermal Image Feature Enhancement in Tunnel Lining Cracks and Leakage An End-to-End Quantitative Identification Method for Mining Wire Rope Damage Based on Time Series Classification and Deep Learning Particle Filter-Based Fault Prognosis of Live XLPE Insulated Aerial Bundled Cables Installed at Coastal Regions Using Historical Infrared Thermography Data CNN-Based Similar Microwave Reflection Signals for Improved Detectability and Intelligent Characterization of Internal Defects in Composite Materials Acceptance Criteria for Defects in Polyethylene Welds, Coupling Phased Array Ultrasonic Testing and Destructive Tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1