Operational strategies of pulsed electrolysis to enhance multi-carbon product formation in electrocatalytic CO2 reduction†

EES catalysis Pub Date : 2024-05-16 DOI:10.1039/D4EY00039K
Takashi Ito, Jithu Raj, Tianyu Zhang, Soumyabrata Roy and Jingjie Wu
{"title":"Operational strategies of pulsed electrolysis to enhance multi-carbon product formation in electrocatalytic CO2 reduction†","authors":"Takashi Ito, Jithu Raj, Tianyu Zhang, Soumyabrata Roy and Jingjie Wu","doi":"10.1039/D4EY00039K","DOIUrl":null,"url":null,"abstract":"<p >The electrocatalytic reduction of CO<small><sub>2</sub></small> offers a promising avenue for converting anthropogenic CO<small><sub>2</sub></small> into valuable chemical and fuel feedstocks. Copper (Cu) catalysts have shown potential in this regard, yet challenges persist in achieving high selectivity for multi-carbon (C<small><sub>2+</sub></small>) products. Pulsed electrolysis, employing alternating anodic and cathodic potentials (<em>E</em><small><sub>a</sub></small>/<em>E</em><small><sub>c</sub></small>) or two different cathodic potentials (<em>E</em><small><sub>c1</sub></small>/<em>E</em><small><sub>c2</sub></small>), presents a promising approach to modulate activity and selectivity. In this study, we investigate the influence of catalyst morphology and operational strategies on C<small><sub>2+</sub></small> product formation using Cu nanoparticles (NPs) and CuO nanowires (NWs) in flow cells. In <em>E</em><small><sub>a</sub></small>/<em>E</em><small><sub>c</sub></small> mode, commercial Cu NPs show negligible promotion of C<small><sub>2+</sub></small> selectivity while CuO NWs demonstrate enhanced C<small><sub>2+</sub></small> selectivity attributed to facile oxidation/redox cycling and grain boundary formation. In contrast, <em>E</em><small><sub>c1</sub></small>/<em>E</em><small><sub>c2</sub></small> pulsed electrolysis promotes C<small><sub>2+</sub></small> yield across various catalyst morphologies by enhancing CO<small><sub>2</sub></small> accumulation, pH effect, and supplemental CO utilization. We further extend our investigation to membrane electrode assembly cells, highlighting the potential for scalability and commercialization. Our findings underscore the importance of catalyst morphology and operational strategies in optimizing C<small><sub>2+</sub></small> product formation pulsed electrolysis, laying the groundwork for future advancements in CO<small><sub>2</sub></small> electroreduction technologies.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 4","pages":" 997-1005"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00039k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00039k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic reduction of CO2 offers a promising avenue for converting anthropogenic CO2 into valuable chemical and fuel feedstocks. Copper (Cu) catalysts have shown potential in this regard, yet challenges persist in achieving high selectivity for multi-carbon (C2+) products. Pulsed electrolysis, employing alternating anodic and cathodic potentials (Ea/Ec) or two different cathodic potentials (Ec1/Ec2), presents a promising approach to modulate activity and selectivity. In this study, we investigate the influence of catalyst morphology and operational strategies on C2+ product formation using Cu nanoparticles (NPs) and CuO nanowires (NWs) in flow cells. In Ea/Ec mode, commercial Cu NPs show negligible promotion of C2+ selectivity while CuO NWs demonstrate enhanced C2+ selectivity attributed to facile oxidation/redox cycling and grain boundary formation. In contrast, Ec1/Ec2 pulsed electrolysis promotes C2+ yield across various catalyst morphologies by enhancing CO2 accumulation, pH effect, and supplemental CO utilization. We further extend our investigation to membrane electrode assembly cells, highlighting the potential for scalability and commercialization. Our findings underscore the importance of catalyst morphology and operational strategies in optimizing C2+ product formation pulsed electrolysis, laying the groundwork for future advancements in CO2 electroreduction technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在电催化二氧化碳还原过程中加强多碳产物形成的脉冲电解操作策略
二氧化碳的电催化还原为将人为二氧化碳转化为有价值的化学和燃料原料提供了一条前景广阔的途径。铜(Cu)催化剂在这方面已显示出潜力,但在实现多碳(C2+)产品的高选择性方面仍存在挑战。采用交替阳极电位和阴极电位(Ea/Ec)或两种不同的阴极电位(Ec1/Ec2)的脉冲电解是一种很有前景的调节活性和选择性的方法。在本研究中,我们研究了在流动池中使用铜纳米颗粒(NPs)和氧化铜纳米线(NWs)的催化剂形态和操作策略对 C2+ 产物形成的影响。在 Ea/Ec 模式下,商用 Cu NPs 对 C2+ 选择性的促进作用微乎其微,而 CuO NWs 则由于易于氧化/氧化还原循环和晶界形成而提高了 C2+ 选择性。与此相反,Ec1/Ec2 脉冲电解通过增强 CO2 积累、pH 值效应和补充 CO 利用,促进了各种催化剂形态的 C2+ 产率。我们进一步将研究扩展到膜电极组装电池,强调了可扩展性和商业化的潜力。我们的研究结果强调了催化剂形态和操作策略在通过脉冲电解优化 C2+ 产物形成中的重要性,为未来二氧化碳电还原技术的进步奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Correction: High photocatalytic yield in the non-oxidative coupling of methane using a Pd–TiO2 nanomembrane gas flow-through reactor Embedding the intermetallic Pt5Ce alloy in mesopores through Pt–C coordination layer interactions as a stable electrocatalyst for the oxygen reduction reaction† Efficient CO2-to-CO conversion in dye-sensitized photocatalytic systems enabled by electrostatically-driven catalyst binding† Green energy driven methane conversion under mild conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1