Takashi Ito, Jithu Raj, Tianyu Zhang, Soumyabrata Roy and Jingjie Wu
{"title":"Operational strategies of pulsed electrolysis to enhance multi-carbon product formation in electrocatalytic CO2 reduction†","authors":"Takashi Ito, Jithu Raj, Tianyu Zhang, Soumyabrata Roy and Jingjie Wu","doi":"10.1039/D4EY00039K","DOIUrl":null,"url":null,"abstract":"<p >The electrocatalytic reduction of CO<small><sub>2</sub></small> offers a promising avenue for converting anthropogenic CO<small><sub>2</sub></small> into valuable chemical and fuel feedstocks. Copper (Cu) catalysts have shown potential in this regard, yet challenges persist in achieving high selectivity for multi-carbon (C<small><sub>2+</sub></small>) products. Pulsed electrolysis, employing alternating anodic and cathodic potentials (<em>E</em><small><sub>a</sub></small>/<em>E</em><small><sub>c</sub></small>) or two different cathodic potentials (<em>E</em><small><sub>c1</sub></small>/<em>E</em><small><sub>c2</sub></small>), presents a promising approach to modulate activity and selectivity. In this study, we investigate the influence of catalyst morphology and operational strategies on C<small><sub>2+</sub></small> product formation using Cu nanoparticles (NPs) and CuO nanowires (NWs) in flow cells. In <em>E</em><small><sub>a</sub></small>/<em>E</em><small><sub>c</sub></small> mode, commercial Cu NPs show negligible promotion of C<small><sub>2+</sub></small> selectivity while CuO NWs demonstrate enhanced C<small><sub>2+</sub></small> selectivity attributed to facile oxidation/redox cycling and grain boundary formation. In contrast, <em>E</em><small><sub>c1</sub></small>/<em>E</em><small><sub>c2</sub></small> pulsed electrolysis promotes C<small><sub>2+</sub></small> yield across various catalyst morphologies by enhancing CO<small><sub>2</sub></small> accumulation, pH effect, and supplemental CO utilization. We further extend our investigation to membrane electrode assembly cells, highlighting the potential for scalability and commercialization. Our findings underscore the importance of catalyst morphology and operational strategies in optimizing C<small><sub>2+</sub></small> product formation pulsed electrolysis, laying the groundwork for future advancements in CO<small><sub>2</sub></small> electroreduction technologies.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 4","pages":" 997-1005"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00039k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00039k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The electrocatalytic reduction of CO2 offers a promising avenue for converting anthropogenic CO2 into valuable chemical and fuel feedstocks. Copper (Cu) catalysts have shown potential in this regard, yet challenges persist in achieving high selectivity for multi-carbon (C2+) products. Pulsed electrolysis, employing alternating anodic and cathodic potentials (Ea/Ec) or two different cathodic potentials (Ec1/Ec2), presents a promising approach to modulate activity and selectivity. In this study, we investigate the influence of catalyst morphology and operational strategies on C2+ product formation using Cu nanoparticles (NPs) and CuO nanowires (NWs) in flow cells. In Ea/Ec mode, commercial Cu NPs show negligible promotion of C2+ selectivity while CuO NWs demonstrate enhanced C2+ selectivity attributed to facile oxidation/redox cycling and grain boundary formation. In contrast, Ec1/Ec2 pulsed electrolysis promotes C2+ yield across various catalyst morphologies by enhancing CO2 accumulation, pH effect, and supplemental CO utilization. We further extend our investigation to membrane electrode assembly cells, highlighting the potential for scalability and commercialization. Our findings underscore the importance of catalyst morphology and operational strategies in optimizing C2+ product formation pulsed electrolysis, laying the groundwork for future advancements in CO2 electroreduction technologies.