Guaranteeing Control Requirements via Reward Shaping in Reinforcement Learning

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Control Systems Technology Pub Date : 2024-03-17 DOI:10.1109/TCST.2024.3393210
Francesco De Lellis;Marco Coraggio;Giovanni Russo;Mirco Musolesi;Mario di Bernardo
{"title":"Guaranteeing Control Requirements via Reward Shaping in Reinforcement Learning","authors":"Francesco De Lellis;Marco Coraggio;Giovanni Russo;Mirco Musolesi;Mario di Bernardo","doi":"10.1109/TCST.2024.3393210","DOIUrl":null,"url":null,"abstract":"In addressing control problems such as regulation and tracking through reinforcement learning (RL), it is often required to guarantee that the acquired policy meets essential performance and stability criteria such as a desired settling time and steady-state error before deployment. Motivated by this, we present a set of results and a systematic reward-shaping procedure that: 1) ensures the optimal policy generates trajectories that align with specified control requirements and 2) allows to assess whether any given policy satisfies them. We validate our approach through comprehensive numerical experiments conducted in two representative environments from OpenAI Gym: the Pendulum swing-up problem and the Lunar Lander. Utilizing both tabular and deep RL methods, our experiments consistently affirm the efficacy of our proposed framework, highlighting its effectiveness in ensuring policy adherence to the prescribed control requirements.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2102-2113"},"PeriodicalIF":4.9000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10534075","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10534075/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In addressing control problems such as regulation and tracking through reinforcement learning (RL), it is often required to guarantee that the acquired policy meets essential performance and stability criteria such as a desired settling time and steady-state error before deployment. Motivated by this, we present a set of results and a systematic reward-shaping procedure that: 1) ensures the optimal policy generates trajectories that align with specified control requirements and 2) allows to assess whether any given policy satisfies them. We validate our approach through comprehensive numerical experiments conducted in two representative environments from OpenAI Gym: the Pendulum swing-up problem and the Lunar Lander. Utilizing both tabular and deep RL methods, our experiments consistently affirm the efficacy of our proposed framework, highlighting its effectiveness in ensuring policy adherence to the prescribed control requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过强化学习中的奖励塑造保证控制要求
在通过强化学习(RL)解决调节和跟踪等控制问题时,通常需要保证所获得的策略满足基本的性能和稳定性标准,如部署前所需的稳定时间和稳态误差。受此启发,我们提出了一系列结果和系统性奖励塑造程序,这些结果和程序包括1)确保最优策略生成的轨迹符合指定的控制要求;2)允许评估任何给定策略是否满足这些要求。我们在 OpenAI Gym 的两个代表性环境中进行了全面的数值实验,验证了我们的方法:钟摆摆动问题和月球着陆器。利用表格和深度 RL 方法,我们的实验一致肯定了我们提出的框架的功效,强调了它在确保策略符合规定的控制要求方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
期刊最新文献
2023-2024 Index IEEE Transactions on Control Systems Technology Vol. 32 Table of Contents Predictive Control for Autonomous Driving With Uncertain, Multimodal Predictions High-Speed Interception Multicopter Control by Image-Based Visual Servoing Real-Time Mixed-Integer Quadratic Programming for Vehicle Decision-Making and Motion Planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1