Divalent cations promote huntingtin fibril formation on endoplasmic reticulum derived and model membranes

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-05-18 DOI:10.1016/j.bbamem.2024.184339
Adam Skeens , Jordyn M. Markle , Gabriella Petipas , Shelli L. Frey , Justin Legleiter
{"title":"Divalent cations promote huntingtin fibril formation on endoplasmic reticulum derived and model membranes","authors":"Adam Skeens ,&nbsp;Jordyn M. Markle ,&nbsp;Gabriella Petipas ,&nbsp;Shelli L. Frey ,&nbsp;Justin Legleiter","doi":"10.1016/j.bbamem.2024.184339","DOIUrl":null,"url":null,"abstract":"<div><p>Huntington's Disease (HD) is caused by an abnormal expansion of the polyglutamine (polyQ) domain within the first exon of the huntingtin protein (htt). This expansion promotes disease-related htt aggregation into amyloid fibrils and the formation of proteinaceous inclusion bodies within neurons. Fibril formation is a complex heterogenous process involving an array of aggregate species such as oligomers, protofibrils, and fibrils. In HD, structural abnormalities of membranes of several organelles develop. In particular, the accumulation of htt fibrils near the endoplasmic reticulum (ER) impinges upon the membrane, resulting in ER damage, altered dynamics, and leakage of Ca<sup>2+</sup>. Here, the aggregation of htt at a bilayer interface assembled from ER-derived liposomes was investigated, and fibril formation directly on these membranes was enhanced. Based on these observations, simplified model systems were used to investigate mechanisms associated with htt aggregation on ER membranes. As the ER-derived liposome fractions contained residual Ca<sup>2+</sup><sub>,</sub> the role of divalent cations was also investigated. In the absence of lipids, divalent cations had minimal impact on htt structure and aggregation. However, the presence of Ca<sup>2+</sup> or Mg<sup>2+</sup> played a key role in promoting fibril formation on lipid membranes despite reduced htt insertion into and association with lipid interfaces, suggesting that the ability of divalent cations to promote fibril formation on membranes is mediated by induced changes to the lipid membrane physicochemical properties. With enhanced concentrations of intracellular calcium being a hallmark of HD, the ability of divalent cations to influence htt aggregation at lipid membranes may play a role in aggregation events that lead to organelle abnormalities associated with disease.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273624000701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Huntington's Disease (HD) is caused by an abnormal expansion of the polyglutamine (polyQ) domain within the first exon of the huntingtin protein (htt). This expansion promotes disease-related htt aggregation into amyloid fibrils and the formation of proteinaceous inclusion bodies within neurons. Fibril formation is a complex heterogenous process involving an array of aggregate species such as oligomers, protofibrils, and fibrils. In HD, structural abnormalities of membranes of several organelles develop. In particular, the accumulation of htt fibrils near the endoplasmic reticulum (ER) impinges upon the membrane, resulting in ER damage, altered dynamics, and leakage of Ca2+. Here, the aggregation of htt at a bilayer interface assembled from ER-derived liposomes was investigated, and fibril formation directly on these membranes was enhanced. Based on these observations, simplified model systems were used to investigate mechanisms associated with htt aggregation on ER membranes. As the ER-derived liposome fractions contained residual Ca2+, the role of divalent cations was also investigated. In the absence of lipids, divalent cations had minimal impact on htt structure and aggregation. However, the presence of Ca2+ or Mg2+ played a key role in promoting fibril formation on lipid membranes despite reduced htt insertion into and association with lipid interfaces, suggesting that the ability of divalent cations to promote fibril formation on membranes is mediated by induced changes to the lipid membrane physicochemical properties. With enhanced concentrations of intracellular calcium being a hallmark of HD, the ability of divalent cations to influence htt aggregation at lipid membranes may play a role in aggregation events that lead to organelle abnormalities associated with disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二价阳离子可促进内质网衍生膜和模型膜上亨廷汀纤维的形成。
亨廷顿舞蹈症(Huntington's Disease,HD)是由亨廷廷蛋白(htt)第一个外显子中的多谷氨酰胺(polyQ)结构域异常扩展引起的。这种扩展促使与疾病相关的 htt 聚合成淀粉样纤维,并在神经元内形成蛋白性包涵体。纤维的形成是一个复杂的异质过程,涉及低聚物、原纤维和纤维等一系列聚合体。在 HD 中,多个细胞器的膜出现结构异常。特别是,htt纤维在内质网(ER)附近的聚集会影响膜,导致ER损伤、动力学改变和Ca2+泄漏。在这里,我们研究了 htt 在由 ER 衍生的脂质体组装而成的双层界面上的聚集情况,并发现直接在这些膜上形成的纤维得到了增强。基于这些观察结果,我们使用简化的模型系统来研究 htt 在 ER 膜上聚集的相关机制。由于ER衍生脂质体部分含有残留的Ca2+,因此还研究了二价阳离子的作用。在没有脂质的情况下,二价阳离子对 htt 结构和聚集的影响微乎其微。这表明二价阳离子促进膜上纤维形成的能力是通过诱导脂膜理化性质的变化来实现的。细胞内钙浓度升高是 HD 的一个特征,因此二价阳离子影响 htt 在脂膜上聚集的能力可能在导致与疾病相关的细胞器异常的聚集事件中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1