miR-497 Target Gene Regulatory Network in Angiosarcoma.

IF 4.1 2区 医学 Q2 CELL BIOLOGY Molecular Cancer Research Pub Date : 2024-09-04 DOI:10.1158/1541-7786.MCR-23-1075
Annaleigh Benton, Noah M Moriarty, Emma Terwilliger, Bozhi Liu, Ant Murphy, Hannah Maluvac, Mae Shu, Lauren E Gartenhaus, Nimod D Janson, Claire M Pfeffer, Sagar M Utturkar, Elizabeth I Parkinson, Nadia A Lanman, Jason A Hanna
{"title":"miR-497 Target Gene Regulatory Network in Angiosarcoma.","authors":"Annaleigh Benton, Noah M Moriarty, Emma Terwilliger, Bozhi Liu, Ant Murphy, Hannah Maluvac, Mae Shu, Lauren E Gartenhaus, Nimod D Janson, Claire M Pfeffer, Sagar M Utturkar, Elizabeth I Parkinson, Nadia A Lanman, Jason A Hanna","doi":"10.1158/1541-7786.MCR-23-1075","DOIUrl":null,"url":null,"abstract":"<p><p>Angiosarcoma is a vascular sarcoma that is highly aggressive and metastatic. Because of its rarity, treatment options for patients are limited. Therefore, more research is needed to identify possible therapeutic vulnerabilities. We previously found that conditional deletion of Dicer1 drives angiosarcoma development in mice. Given the role of DICER1 in canonical miRNA biogenesis, this suggests that miRNA loss is important in angiosarcoma development. After testing miRNAs previously suggested to have a tumor-suppressive role in angiosarcoma, miRNA-497-5p (miR-497) suppressed cell viability most significantly. We also found that miR-497 overexpression led to significantly reduced cell migration and tumor formation. To understand the mechanism of miR-497 in tumor suppression, we identified clinically relevant target genes using a combination of RNA-sequencing data in an angiosarcoma cell line, expression data from patients with angiosarcoma, and target prediction algorithms. We validated miR-497 direct regulation of cyclin-D2, cyclin-dependent kinase 6, and vesicle amine transport protein 1 (VAT1). One of these genes, VAT1, is an understudied protein that has been suggested to promote cell migration and metastasis in other cancers. Indeed, we find that pharmacologic inhibition of VAT1 with the natural product neocarzilin A reduces angiosarcoma migration. Implications: This work supports the potent tumor-suppressive abilities of miR-497 in angiosarcoma, providing evidence for its potential as a therapeutic agent, and provides insight into the mechanisms of tumor suppression through analysis of the target gene regulatory network of miR-497.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"879-890"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374500/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-23-1075","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Angiosarcoma is a vascular sarcoma that is highly aggressive and metastatic. Because of its rarity, treatment options for patients are limited. Therefore, more research is needed to identify possible therapeutic vulnerabilities. We previously found that conditional deletion of Dicer1 drives angiosarcoma development in mice. Given the role of DICER1 in canonical miRNA biogenesis, this suggests that miRNA loss is important in angiosarcoma development. After testing miRNAs previously suggested to have a tumor-suppressive role in angiosarcoma, miRNA-497-5p (miR-497) suppressed cell viability most significantly. We also found that miR-497 overexpression led to significantly reduced cell migration and tumor formation. To understand the mechanism of miR-497 in tumor suppression, we identified clinically relevant target genes using a combination of RNA-sequencing data in an angiosarcoma cell line, expression data from patients with angiosarcoma, and target prediction algorithms. We validated miR-497 direct regulation of cyclin-D2, cyclin-dependent kinase 6, and vesicle amine transport protein 1 (VAT1). One of these genes, VAT1, is an understudied protein that has been suggested to promote cell migration and metastasis in other cancers. Indeed, we find that pharmacologic inhibition of VAT1 with the natural product neocarzilin A reduces angiosarcoma migration. Implications: This work supports the potent tumor-suppressive abilities of miR-497 in angiosarcoma, providing evidence for its potential as a therapeutic agent, and provides insight into the mechanisms of tumor suppression through analysis of the target gene regulatory network of miR-497.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血管肉瘤中的 miR-497 靶基因调控网络
血管肉瘤是一种血管肉瘤,具有高度侵袭性和转移性。由于其罕见性,患者的治疗选择有限,因此需要更多的研究来确定可能的治疗漏洞。我们之前发现,Dicer1 的条件性缺失会导致小鼠血管肉瘤的发生。鉴于 DICER1 在典型微RNA(miRNA)生物发生中的作用,这表明 miRNA 的缺失在血管肉瘤的发展中非常重要。在测试了之前被认为在血管肉瘤中具有肿瘤抑制作用的 miRNA 后,microRNA-497-5p(miR-497)对细胞活力的抑制作用最为显著。我们还发现,miR-497 过表达会导致细胞迁移和肿瘤形成明显减少。为了了解 miR-497 抑制肿瘤的机制,我们结合血管肉瘤细胞系的 RNA 测序数据、血管肉瘤患者的表达数据和靶点预测算法,确定了与临床相关的靶基因。我们验证了 miR-497 对 CCND2、CDK6 和 VAT1 的直接调控。其中一个基因 VAT1 是一种未被充分研究的蛋白质,有人认为它能促进其他癌症的细胞迁移和转移。事实上,我们发现用天然产品 Neocarzilin A 对 VAT1 进行药理抑制可减少血管肉瘤的迁移。意义:这项工作证实了 miR-497 在血管肉瘤中的强大肿瘤抑制能力,为其作为一种治疗手段的潜力提供了证据,并通过分析 miR-497 的靶基因调控网络深入了解了肿瘤抑制机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
期刊最新文献
Tumor-derived EBV-miR-BART2-5p promotes nasopharyngeal carcinoma metastasis by inducing pre-metastatic endothelial cell pyroptosis. TIPE inhibits ferroptosis in colorectal cancer cells by regulating MGST1/ALOX5. ASAP1 and ARF1 regulate myogenic differentiation in rhabdomyosarcoma by modulating TAZ activity. lncRNA-WAL Promotes Triple-Negative Breast Cancer Aggression by Inducing β-Catenin Nuclear Translocation. METTL14-Mediated Bim mRNA m6A Modification Augments Osimertinib Sensitivity in EGFR-Mutant NSCLC Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1