Zhibin Fu, Wenqi Chen, Di Gu, Juan Li, Kai Dong, Yuying Lan, Tao Liu, Bianhong Zhang, Lei Li, Ethan Lee, Chenghua Yang, Tao P Zhong, Linhui Wang
{"title":"Empty spiracles homeobox 2 (EMX2) transcription factor functions as a tumor suppressor in renal cell carcinoma by targeting CADM1.","authors":"Zhibin Fu, Wenqi Chen, Di Gu, Juan Li, Kai Dong, Yuying Lan, Tao Liu, Bianhong Zhang, Lei Li, Ethan Lee, Chenghua Yang, Tao P Zhong, Linhui Wang","doi":"10.1158/1541-7786.MCR-24-0496","DOIUrl":null,"url":null,"abstract":"<p><p>Renal cell carcinoma (RCC), a prevalent urinary system malignancy, often metastasizes at an early stage. Characterized by a complex pathogenesis and high mortality rate, RCC poses a significant clinical challenge. We evaluated the expression level of EMX2 in RCC patients and revealed a significant reduction of EMX2 expression, correlating with poor RCC patient prognosis. EMX2 functions as a tumor suppressor and inhibits RCC cell proliferation and migration, accompanied by programmed cell death. Implantation of EMX2-transduced RCC cells beneath the mouse kidney capsule or subcutaneous injection of transduced RCC cells results in a reduction in tumor growth and size. Through RNA-seq and chromatin immunoprecipitation sequencing analyses, we have identified Cell Adhesion Molecule 1 (CADM1) as a direct transcriptional target of EMX2's suppressive effects. CADM1 induction by EMX2 triggers PARP1-mediated parthanatos, a specific type of cell death due to mitochondrial oxidation reduction, in migrating RCC cells. Concurrently, EMX2-CADM1 upregulation instigates Caspase-3-dependent apoptosis in attached RCC cells. Furthermore, EMX2-CADM1 transcriptional axis also inhibits the PI3K-AKT pathway to impair RCC cell growth. Hence, the orchestrated effects mediated by EMX2-CADM1 axis promote RCC cell death and suppresse its growth and invasion, providing potential intervention strategies for combating RCC. Implications: The EMX2-CADM1 transcriptional axis offers a promising therapeutic target for inducing cell death and inhibiting growth and invasion in renal cell carcinoma, which could lead to more effective treatment strategies for this aggressive malignancy.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0496","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Renal cell carcinoma (RCC), a prevalent urinary system malignancy, often metastasizes at an early stage. Characterized by a complex pathogenesis and high mortality rate, RCC poses a significant clinical challenge. We evaluated the expression level of EMX2 in RCC patients and revealed a significant reduction of EMX2 expression, correlating with poor RCC patient prognosis. EMX2 functions as a tumor suppressor and inhibits RCC cell proliferation and migration, accompanied by programmed cell death. Implantation of EMX2-transduced RCC cells beneath the mouse kidney capsule or subcutaneous injection of transduced RCC cells results in a reduction in tumor growth and size. Through RNA-seq and chromatin immunoprecipitation sequencing analyses, we have identified Cell Adhesion Molecule 1 (CADM1) as a direct transcriptional target of EMX2's suppressive effects. CADM1 induction by EMX2 triggers PARP1-mediated parthanatos, a specific type of cell death due to mitochondrial oxidation reduction, in migrating RCC cells. Concurrently, EMX2-CADM1 upregulation instigates Caspase-3-dependent apoptosis in attached RCC cells. Furthermore, EMX2-CADM1 transcriptional axis also inhibits the PI3K-AKT pathway to impair RCC cell growth. Hence, the orchestrated effects mediated by EMX2-CADM1 axis promote RCC cell death and suppresse its growth and invasion, providing potential intervention strategies for combating RCC. Implications: The EMX2-CADM1 transcriptional axis offers a promising therapeutic target for inducing cell death and inhibiting growth and invasion in renal cell carcinoma, which could lead to more effective treatment strategies for this aggressive malignancy.
期刊介绍:
Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.