A three-dimensional, discrete-continuum model of blood pressure in microvascular networks

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2024-05-21 DOI:10.1002/cnm.3832
Paul W. Sweeney, Claire Walsh, Simon Walker-Samuel, Rebecca J. Shipley
{"title":"A three-dimensional, discrete-continuum model of blood pressure in microvascular networks","authors":"Paul W. Sweeney,&nbsp;Claire Walsh,&nbsp;Simon Walker-Samuel,&nbsp;Rebecca J. Shipley","doi":"10.1002/cnm.3832","DOIUrl":null,"url":null,"abstract":"<p>We present a 3D discrete-continuum model to simulate blood pressure in large microvascular tissues in the absence of known capillary network architecture. Our hybrid approach combines a 1D Poiseuille flow description for large, discrete arteriolar and venular networks coupled to a continuum-based Darcy model, point sources of flux, for transport in the capillary bed. We evaluate our hybrid approach using a vascular network imaged from the mouse brain medulla/pons using multi-fluorescence high-resolution episcopic microscopy (MF-HREM). We use the fully-resolved vascular network to predict the hydraulic conductivity of the capillary network and generate a fully-discrete pressure solution to benchmark against. Our results demonstrate that the discrete-continuum methodology is a computationally feasible and effective tool for predicting blood pressure in real-world microvascular tissues when capillary microvessels are poorly defined.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 8","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3832","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3832","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a 3D discrete-continuum model to simulate blood pressure in large microvascular tissues in the absence of known capillary network architecture. Our hybrid approach combines a 1D Poiseuille flow description for large, discrete arteriolar and venular networks coupled to a continuum-based Darcy model, point sources of flux, for transport in the capillary bed. We evaluate our hybrid approach using a vascular network imaged from the mouse brain medulla/pons using multi-fluorescence high-resolution episcopic microscopy (MF-HREM). We use the fully-resolved vascular network to predict the hydraulic conductivity of the capillary network and generate a fully-discrete pressure solution to benchmark against. Our results demonstrate that the discrete-continuum methodology is a computationally feasible and effective tool for predicting blood pressure in real-world microvascular tissues when capillary microvessels are poorly defined.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微血管网络中血压的三维离散连续模型。
我们提出了一种三维离散-连续模型,用于在没有已知毛细血管网络结构的情况下模拟大型微血管组织中的血压。我们的混合方法结合了对大型离散动脉和静脉网络的一维普瓦赛流描述,以及基于连续体的达西模型(点通量源),用于毛细血管床的传输。我们使用多重荧光高分辨率外显微镜(MF-HREM)对小鼠大脑髓质/大脑皮质的血管网络成像进行了评估。我们使用完全解析的血管网络预测毛细血管网络的水力传导性,并生成完全离散的压力解决方案作为基准。我们的研究结果表明,当毛细管微血管定义不清时,离散连续方法是预测真实世界微血管组织血压的一种计算上可行且有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
期刊最新文献
Real-Time Surgical Planning for Cerebral Aneurysms Treated With Intrasaccular Flow Disruption Devices Based on Fast Virtual Deployment and Discrete Element Method. Analyzing Pulse Compression Performance and Image Quality Metrics of Different Excitations in MAET With Magnetic Field Measurements. Precision Orthodontic Force Simulation Using Nodal Displacement-Based Archwire Loading Approach. Design of Mechanics-Guided Helmet Pad and Its Protection Performance Against the Blast Shock Waves. Gender-Based Differences in the Biomechanical Behavior of the Thorax During CPR Maneuvers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1