Renee C B Manworren, Susan Horner, Ralph Joseph, Priyansh Dadar, Naomi Kaduwela
{"title":"Performance Evaluation of a Supervised Machine Learning Pain Classification Model Developed by Neonatal Nurses.","authors":"Renee C B Manworren, Susan Horner, Ralph Joseph, Priyansh Dadar, Naomi Kaduwela","doi":"10.1097/ANC.0000000000001145","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early-life pain is associated with adverse neurodevelopmental consequences; and current pain assessment practices are discontinuous, inconsistent, and highly dependent on nurses' availability. Furthermore, facial expressions in commonly used pain assessment tools are not associated with brain-based evidence of pain.</p><p><strong>Purpose: </strong>To develop and validate a machine learning (ML) model to classify pain.</p><p><strong>Methods: </strong>In this retrospective validation study, using a human-centered design for Embedded Machine Learning Solutions approach and the Neonatal Facial Coding System (NFCS), 6 experienced neonatal intensive care unit (NICU) nurses labeled data from randomly assigned iCOPEvid (infant Classification Of Pain Expression video) sequences of 49 neonates undergoing heel lance. NFCS is the only observational pain assessment tool associated with brain-based evidence of pain. A standard 70% training and 30% testing split of the data was used to train and test several ML models. NICU nurses' interrater reliability was evaluated, and NICU nurses' area under the receiver operating characteristic curve (AUC) was compared with the ML models' AUC.</p><p><strong>Results: </strong>Nurses weighted mean interrater reliability was 68% (63%-79%) for NFCS tasks, 77.7% (74%-83%) for pain intensity, and 48.6% (15%-59%) for frame and 78.4% (64%-100%) for video pain classification, with AUC of 0.68. The best performing ML model had 97.7% precision, 98% accuracy, 98.5% recall, and AUC of 0.98.</p><p><strong>Implications for practice and research: </strong>The pain classification ML model AUC far exceeded that of NICU nurses for identifying neonatal pain. These findings will inform the development of a continuous, unbiased, brain-based, nurse-in-the-loop Pain Recognition Automated Monitoring System (PRAMS) for neonates and infants.</p>","PeriodicalId":48862,"journal":{"name":"Advances in Neonatal Care","volume":" ","pages":"301-310"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Neonatal Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/ANC.0000000000001145","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NURSING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Early-life pain is associated with adverse neurodevelopmental consequences; and current pain assessment practices are discontinuous, inconsistent, and highly dependent on nurses' availability. Furthermore, facial expressions in commonly used pain assessment tools are not associated with brain-based evidence of pain.
Purpose: To develop and validate a machine learning (ML) model to classify pain.
Methods: In this retrospective validation study, using a human-centered design for Embedded Machine Learning Solutions approach and the Neonatal Facial Coding System (NFCS), 6 experienced neonatal intensive care unit (NICU) nurses labeled data from randomly assigned iCOPEvid (infant Classification Of Pain Expression video) sequences of 49 neonates undergoing heel lance. NFCS is the only observational pain assessment tool associated with brain-based evidence of pain. A standard 70% training and 30% testing split of the data was used to train and test several ML models. NICU nurses' interrater reliability was evaluated, and NICU nurses' area under the receiver operating characteristic curve (AUC) was compared with the ML models' AUC.
Results: Nurses weighted mean interrater reliability was 68% (63%-79%) for NFCS tasks, 77.7% (74%-83%) for pain intensity, and 48.6% (15%-59%) for frame and 78.4% (64%-100%) for video pain classification, with AUC of 0.68. The best performing ML model had 97.7% precision, 98% accuracy, 98.5% recall, and AUC of 0.98.
Implications for practice and research: The pain classification ML model AUC far exceeded that of NICU nurses for identifying neonatal pain. These findings will inform the development of a continuous, unbiased, brain-based, nurse-in-the-loop Pain Recognition Automated Monitoring System (PRAMS) for neonates and infants.
期刊介绍:
Advances in Neonatal Care takes a unique and dynamic approach to the original research and clinical practice articles it publishes. Addressing the practice challenges faced every day—caring for the 40,000-plus low-birth-weight infants in Level II and Level III NICUs each year—the journal promotes evidence-based care and improved outcomes for the tiniest patients and their families. Peer-reviewed editorial includes unique and detailed visual and teaching aids, such as Family Teaching Toolbox, Research to Practice, Cultivating Clinical Expertise, and Online Features.
Each issue offers Continuing Education (CE) articles in both print and online formats.