Haoyan Peng , Hongfang Lu , Zhao-Dong Xu , Dongmin Xi , Guojin Qin
{"title":"Failure mechanism of carbon dioxide transport infrastructure: A comprehensive review","authors":"Haoyan Peng , Hongfang Lu , Zhao-Dong Xu , Dongmin Xi , Guojin Qin","doi":"10.1016/j.ijggc.2024.104144","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon dioxide capture and storage (CCS), the bottom covering technology for environmental protection and energy transformation, plays a vital role in reducing CO<sub>2</sub> emissions and has become an international research hotspot. The safe operation of CO<sub>2</sub> transport infrastructure is crucial to ensure the smooth implementation of carbon reduction actions. However, the understanding of disasters in carbon transmission infrastructure is not comprehensive and profound enough since CCS is still developing, which leads to few engineering standards on disaster prevention and mitigation of CO<sub>2</sub> transport infrastructure. This paper provides detailed reviews, including the composition and characteristics of carbon transmission infrastructure, failure mechanisms. It is concluded that the characteristics of CO<sub>2</sub> transport infrastructure damage fundamentally stems from the working fluid and environment, and novelty pointed out that future research hotspots are damage under multi-field coupling, damage detection and monitoring, design to reduce damage and repair after damage. The summary of existing research will be helpful for future academic research and engineering practice of CO<sub>2</sub> transport infrastructure disaster prevention and mitigation.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"135 ","pages":"Article 104144"},"PeriodicalIF":4.6000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624000872","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon dioxide capture and storage (CCS), the bottom covering technology for environmental protection and energy transformation, plays a vital role in reducing CO2 emissions and has become an international research hotspot. The safe operation of CO2 transport infrastructure is crucial to ensure the smooth implementation of carbon reduction actions. However, the understanding of disasters in carbon transmission infrastructure is not comprehensive and profound enough since CCS is still developing, which leads to few engineering standards on disaster prevention and mitigation of CO2 transport infrastructure. This paper provides detailed reviews, including the composition and characteristics of carbon transmission infrastructure, failure mechanisms. It is concluded that the characteristics of CO2 transport infrastructure damage fundamentally stems from the working fluid and environment, and novelty pointed out that future research hotspots are damage under multi-field coupling, damage detection and monitoring, design to reduce damage and repair after damage. The summary of existing research will be helpful for future academic research and engineering practice of CO2 transport infrastructure disaster prevention and mitigation.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.