Adam Cegla, Witold Rohm, Gregor Moeller, Paweł Hordyniec, Estera Trzcina, Natalia Hanna
{"title":"GNSS signal ray-tracing algorithm for the simulation of satellite-to-satellite excess phase in the neutral atmosphere","authors":"Adam Cegla, Witold Rohm, Gregor Moeller, Paweł Hordyniec, Estera Trzcina, Natalia Hanna","doi":"10.1007/s00190-024-01847-0","DOIUrl":null,"url":null,"abstract":"<p>Traditionally, GNSS space-based and ground-based estimates of tropospheric conditions are performed separately. It leads to limitations in the horizontal (e.g., a single space-based radio occultation profile covers a 300 km slice of the troposphere) and vertical resolution (e.g., ground-based estimates of troposphere conditions have spacing equal to stations’ distribution) of the tropospheric products. The first stage to achieve an integrated model is to create an effective 3D ray-tracing algorithm for the satellite-to-satellite (radio occultation) path reconstruction. We verify the consistency of the simulated data with the RO observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-1) Data Analysis and Archive Center (CDAAC) in terms of excess phase and bending angle. The results show that our solution provides an effective RO excess phase, with a relative error varying from 35% at the height of 25–30 km (1.0–1.5 m) to 0.5% at heights 5–10 km (0.1–1 m) and 14 to 2% at heights below 5 km (2–14 m). The bending angle retrieval on simulated data attained for high-resolution ray-tracing, bias lower than 2% with respect to the observed bending angle. The optimal solution takes about 1 s for one transmitter–receiver pair with a tangent point below 5 km altitude. The high-resolution processing solution takes 3 times longer.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"40 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01847-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Traditionally, GNSS space-based and ground-based estimates of tropospheric conditions are performed separately. It leads to limitations in the horizontal (e.g., a single space-based radio occultation profile covers a 300 km slice of the troposphere) and vertical resolution (e.g., ground-based estimates of troposphere conditions have spacing equal to stations’ distribution) of the tropospheric products. The first stage to achieve an integrated model is to create an effective 3D ray-tracing algorithm for the satellite-to-satellite (radio occultation) path reconstruction. We verify the consistency of the simulated data with the RO observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-1) Data Analysis and Archive Center (CDAAC) in terms of excess phase and bending angle. The results show that our solution provides an effective RO excess phase, with a relative error varying from 35% at the height of 25–30 km (1.0–1.5 m) to 0.5% at heights 5–10 km (0.1–1 m) and 14 to 2% at heights below 5 km (2–14 m). The bending angle retrieval on simulated data attained for high-resolution ray-tracing, bias lower than 2% with respect to the observed bending angle. The optimal solution takes about 1 s for one transmitter–receiver pair with a tangent point below 5 km altitude. The high-resolution processing solution takes 3 times longer.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics