MolPROP: Molecular Property prediction with multimodal language and graph fusion

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2024-05-22 DOI:10.1186/s13321-024-00846-9
Zachary A. Rollins, Alan C. Cheng, Essam Metwally
{"title":"MolPROP: Molecular Property prediction with multimodal language and graph fusion","authors":"Zachary A. Rollins,&nbsp;Alan C. Cheng,&nbsp;Essam Metwally","doi":"10.1186/s13321-024-00846-9","DOIUrl":null,"url":null,"abstract":"<p>Pretrained deep learning models self-supervised on large datasets of language, image, and graph representations are often fine-tuned on downstream tasks and have demonstrated remarkable adaptability in a variety of applications including chatbots, autonomous driving, and protein folding. Additional research aims to improve performance on downstream tasks by fusing high dimensional data representations across multiple modalities. In this work, we explore a novel fusion of a pretrained language model, ChemBERTa-2, with graph neural networks for the task of molecular property prediction. We benchmark the MolPROP suite of models on seven scaffold split MoleculeNet datasets and compare with state-of-the-art architectures. We find that (1) multimodal property prediction for small molecules can match or significantly outperform modern architectures on hydration free energy (FreeSolv), experimental water solubility (ESOL), lipophilicity (Lipo), and clinical toxicity tasks (ClinTox), (2) the MolPROP multimodal fusion is predominantly beneficial on regression tasks, (3) the ChemBERTa-2 masked language model pretraining task (MLM) outperformed multitask regression pretraining task (MTR) when fused with graph neural networks for multimodal property prediction, and (4) despite improvements from multimodal fusion on regression tasks MolPROP significantly underperforms on some classification tasks. MolPROP has been made available at https://github.com/merck/MolPROP.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00846-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00846-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pretrained deep learning models self-supervised on large datasets of language, image, and graph representations are often fine-tuned on downstream tasks and have demonstrated remarkable adaptability in a variety of applications including chatbots, autonomous driving, and protein folding. Additional research aims to improve performance on downstream tasks by fusing high dimensional data representations across multiple modalities. In this work, we explore a novel fusion of a pretrained language model, ChemBERTa-2, with graph neural networks for the task of molecular property prediction. We benchmark the MolPROP suite of models on seven scaffold split MoleculeNet datasets and compare with state-of-the-art architectures. We find that (1) multimodal property prediction for small molecules can match or significantly outperform modern architectures on hydration free energy (FreeSolv), experimental water solubility (ESOL), lipophilicity (Lipo), and clinical toxicity tasks (ClinTox), (2) the MolPROP multimodal fusion is predominantly beneficial on regression tasks, (3) the ChemBERTa-2 masked language model pretraining task (MLM) outperformed multitask regression pretraining task (MTR) when fused with graph neural networks for multimodal property prediction, and (4) despite improvements from multimodal fusion on regression tasks MolPROP significantly underperforms on some classification tasks. MolPROP has been made available at https://github.com/merck/MolPROP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MolPROP:利用多模态语言和图谱融合进行分子特性预测。
在语言、图像和图形表示的大型数据集上进行自我监督的预训练深度学习模型通常会在下游任务中进行微调,并在聊天机器人、自动驾驶和蛋白质折叠等各种应用中表现出显著的适应性。其他研究旨在通过融合多种模式的高维数据表示来提高下游任务的性能。在这项工作中,我们探索了将预训练语言模型 ChemBERTa-2 与图神经网络融合用于分子性质预测任务的新方法。我们在七个支架拆分的 MoleculeNet 数据集上对 MolPROP 模型套件进行了基准测试,并与最先进的架构进行了比较。我们发现:(1) 在水合自由能 (FreeSolv)、实验水溶性 (ESOL)、亲油性 (Lipo) 和临床毒性 (ClinTox) 任务上,小分子的多模态性质预测可以与现代体系结构相媲美或明显优于现代体系结构;(2) MolPROP 多模态融合主要有利于回归任务、(3)ChemBERTa-2 蒙蔽语言模型预训练任务(MLM)与图神经网络融合用于多模态性质预测时,其效果优于多任务回归预训练任务(MTR);以及(4)尽管多模态融合在回归任务上有所改进,但 MolPROP 在某些分类任务上的表现明显不佳。MolPROP 可在 https://github.com/merck/MolPROP 上查阅。科学贡献:这项研究探索了一种新颖的多模态融合小分子学习语言和图表征的方法,用于分子性质预测的监督任务。MolPROP 模型套件表明,语言和图形融合在多项回归预测任务中的表现明显优于现代架构,同时也为探索多模态分子性质预测分类任务中的其他融合策略提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
One size does not fit all: revising traditional paradigms for assessing accuracy of QSAR models used for virtual screening Chemical space as a unifying theme for chemistry Context-dependent similarity analysis of analogue series for structure–activity relationship transfer based on a concept from natural language processing Fragmenstein: predicting protein–ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology ADMET evaluation in drug discovery: 21. Application and industrial validation of machine learning algorithms for Caco-2 permeability prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1