Context-dependent similarity analysis of analogue series for structure–activity relationship transfer based on a concept from natural language processing
{"title":"Context-dependent similarity analysis of analogue series for structure–activity relationship transfer based on a concept from natural language processing","authors":"Atsushi Yoshimori, Jürgen Bajorath","doi":"10.1186/s13321-025-00951-3","DOIUrl":null,"url":null,"abstract":"Analogue series (AS) are generated during compound optimization in medicinal chemistry and are the major source of structure–activity relationship (SAR) information. Pairs of active AS consisting of compounds with corresponding substituents and comparable potency progression represent SAR transfer events for the same target or across different targets. We report a new computational approach to systematically search for SAR transfer series that combines an AS alignment algorithm with context-depending similarity assessment based on vector embeddings adapted from natural language processing. The methodology comprehensively accounts for substituent similarity, identifies non-classical bioisosteres, captures substituent-property relationships, and generates accurate AS alignments. Context-dependent similarity assessment is conceptually novel in computational medicinal chemistry and should also be of interest for other applications. Scientific contribution A method is reported to systematically search for and align analogue series with SAR transfer potential. Central to the approach is the assessment of context-dependent similarity for substituents, a new concept in cheminformatics, which is based upon vector embeddings and word pair relationships adapted from natural language processing.","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"3 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s13321-025-00951-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Analogue series (AS) are generated during compound optimization in medicinal chemistry and are the major source of structure–activity relationship (SAR) information. Pairs of active AS consisting of compounds with corresponding substituents and comparable potency progression represent SAR transfer events for the same target or across different targets. We report a new computational approach to systematically search for SAR transfer series that combines an AS alignment algorithm with context-depending similarity assessment based on vector embeddings adapted from natural language processing. The methodology comprehensively accounts for substituent similarity, identifies non-classical bioisosteres, captures substituent-property relationships, and generates accurate AS alignments. Context-dependent similarity assessment is conceptually novel in computational medicinal chemistry and should also be of interest for other applications. Scientific contribution A method is reported to systematically search for and align analogue series with SAR transfer potential. Central to the approach is the assessment of context-dependent similarity for substituents, a new concept in cheminformatics, which is based upon vector embeddings and word pair relationships adapted from natural language processing.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.