ADMET evaluation in drug discovery: 21. Application and industrial validation of machine learning algorithms for Caco-2 permeability prediction

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2025-01-10 DOI:10.1186/s13321-025-00947-z
Dong Wang, Jieyu Jin, Guqin Shi, Jingxiao Bao, Zheng Wang, Shimeng Li, Peichen Pan, Dan Li, Yu Kang, Tingjun Hou
{"title":"ADMET evaluation in drug discovery: 21. Application and industrial validation of machine learning algorithms for Caco-2 permeability prediction","authors":"Dong Wang,&nbsp;Jieyu Jin,&nbsp;Guqin Shi,&nbsp;Jingxiao Bao,&nbsp;Zheng Wang,&nbsp;Shimeng Li,&nbsp;Peichen Pan,&nbsp;Dan Li,&nbsp;Yu Kang,&nbsp;Tingjun Hou","doi":"10.1186/s13321-025-00947-z","DOIUrl":null,"url":null,"abstract":"<div><p>The Caco-2 cell model has been widely used to assess the intestinal permeability of drug candidates <i>in vitro</i>, owing to its morphological and functional similarity to human enterocytes. While Caco-2 cell assay is considered safe and cost-effective, it is also characterized by being time-consuming. Therefore, computational models that achieve high accuracies in predicting Caco-2 permeability are crucial for enhancing the efficiency of oral drug development. In this study, we conducted an in-depth analysis of the characteristics of an augmented Caco-2 permeability dataset, and evaluated a diverse range of machine learning algorithms in combination with different molecular representations. The results indicated that XGBoost generally provided better predictions than comparable models for the test sets. In addition, we investigated the transferability of machine learning models trained on publicly available data to internal pharmaceutical industry datasets. Our findings, based on the Shanghai Qilu’s <i>in-house</i> dataset, showed that the boosting models retained a degree of predictive efficacy when applied to industry data. Furthermore, Y-randomization test and applicability domain analysis were employed to assess the robustness and generalizability of these models. Matched Molecular Pair Analysis (MMPA) was utilized to extract chemical transformation rules. We believe that the model developed in this study could represent a reliable tool for assessing Caco-2 permeability during early-stage drug discovery and the chemical transformation rules derived here could provide insights for optimizing Caco-2 permeability.</p><p><b>Scientific contribution</b></p><p>A comprehensive validation of various machine learning algorithms combined with diverse molecular representations on a large dataset for predicting Caco-2 permeability was reported. The transferability of machine learning models trained on publicly available data to internal pharmaceutical industry datasets was also investigated. Matched molecular pair analysis was carried out to provide reasonable suggestions for researchers to improve the Caco-2 permeability of compounds.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00947-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00947-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Caco-2 cell model has been widely used to assess the intestinal permeability of drug candidates in vitro, owing to its morphological and functional similarity to human enterocytes. While Caco-2 cell assay is considered safe and cost-effective, it is also characterized by being time-consuming. Therefore, computational models that achieve high accuracies in predicting Caco-2 permeability are crucial for enhancing the efficiency of oral drug development. In this study, we conducted an in-depth analysis of the characteristics of an augmented Caco-2 permeability dataset, and evaluated a diverse range of machine learning algorithms in combination with different molecular representations. The results indicated that XGBoost generally provided better predictions than comparable models for the test sets. In addition, we investigated the transferability of machine learning models trained on publicly available data to internal pharmaceutical industry datasets. Our findings, based on the Shanghai Qilu’s in-house dataset, showed that the boosting models retained a degree of predictive efficacy when applied to industry data. Furthermore, Y-randomization test and applicability domain analysis were employed to assess the robustness and generalizability of these models. Matched Molecular Pair Analysis (MMPA) was utilized to extract chemical transformation rules. We believe that the model developed in this study could represent a reliable tool for assessing Caco-2 permeability during early-stage drug discovery and the chemical transformation rules derived here could provide insights for optimizing Caco-2 permeability.

Scientific contribution

A comprehensive validation of various machine learning algorithms combined with diverse molecular representations on a large dataset for predicting Caco-2 permeability was reported. The transferability of machine learning models trained on publicly available data to internal pharmaceutical industry datasets was also investigated. Matched molecular pair analysis was carried out to provide reasonable suggestions for researchers to improve the Caco-2 permeability of compounds.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
One size does not fit all: revising traditional paradigms for assessing accuracy of QSAR models used for virtual screening Chemical space as a unifying theme for chemistry Context-dependent similarity analysis of analogue series for structure–activity relationship transfer based on a concept from natural language processing Fragmenstein: predicting protein–ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology ADMET evaluation in drug discovery: 21. Application and industrial validation of machine learning algorithms for Caco-2 permeability prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1