Broad proteomics analysis of seeding-induced aggregation of α-synuclein in M83 neurons reveals remodeling of proteostasis mechanisms that might contribute to Parkinson's disease pathogenesis.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-22 DOI:10.1186/s13041-024-01099-1
Casey J Lumpkin, Hiral Patel, Gregory K Potts, Shilpi Chaurasia, Lauren Gibilisco, Gyan P Srivastava, Janice Y Lee, Nathan J Brown, Patricia Amarante, Jon D Williams, Eric Karran, Matthew Townsend, Dori Woods, Brinda Ravikumar
{"title":"Broad proteomics analysis of seeding-induced aggregation of α-synuclein in M83 neurons reveals remodeling of proteostasis mechanisms that might contribute to Parkinson's disease pathogenesis.","authors":"Casey J Lumpkin, Hiral Patel, Gregory K Potts, Shilpi Chaurasia, Lauren Gibilisco, Gyan P Srivastava, Janice Y Lee, Nathan J Brown, Patricia Amarante, Jon D Williams, Eric Karran, Matthew Townsend, Dori Woods, Brinda Ravikumar","doi":"10.1186/s13041-024-01099-1","DOIUrl":null,"url":null,"abstract":"<p><p>Aggregation of misfolded α-synuclein (α-syn) is a key characteristic feature of Parkinson's disease (PD) and related synucleinopathies. The nature of these aggregates and their contribution to cellular dysfunction is still not clearly elucidated. We employed mass spectrometry-based total and phospho-proteomics to characterize the underlying molecular and biological changes due to α-syn aggregation using the M83 mouse primary neuronal model of PD. We identified gross changes in the proteome that coincided with the formation of large Lewy body-like α-syn aggregates in these neurons. We used protein-protein interaction (PPI)-based network analysis to identify key protein clusters modulating specific biological pathways that may be dysregulated and identified several mechanisms that regulate protein homeostasis (proteostasis). The observed changes in the proteome may include both homeostatic compensation and dysregulation due to α-syn aggregation and a greater understanding of both processes and their role in α-syn-related proteostasis may lead to improved therapeutic options for patients with PD and related disorders.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-024-01099-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Aggregation of misfolded α-synuclein (α-syn) is a key characteristic feature of Parkinson's disease (PD) and related synucleinopathies. The nature of these aggregates and their contribution to cellular dysfunction is still not clearly elucidated. We employed mass spectrometry-based total and phospho-proteomics to characterize the underlying molecular and biological changes due to α-syn aggregation using the M83 mouse primary neuronal model of PD. We identified gross changes in the proteome that coincided with the formation of large Lewy body-like α-syn aggregates in these neurons. We used protein-protein interaction (PPI)-based network analysis to identify key protein clusters modulating specific biological pathways that may be dysregulated and identified several mechanisms that regulate protein homeostasis (proteostasis). The observed changes in the proteome may include both homeostatic compensation and dysregulation due to α-syn aggregation and a greater understanding of both processes and their role in α-syn-related proteostasis may lead to improved therapeutic options for patients with PD and related disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对M83神经元中种子诱导的α-突触核蛋白聚集进行的广义蛋白质组学分析揭示了可能导致帕金森病发病机制的蛋白质稳态机制重塑。
折叠错误的α-突触核蛋白(α-syn)的聚集是帕金森病(PD)和相关突触核蛋白病的一个主要特征。这些聚集体的性质及其对细胞功能障碍的作用仍未得到清楚的阐明。我们采用基于质谱的总蛋白组学和磷酸化蛋白组学方法,利用帕金森病的 M83 小鼠原发性神经元模型来描述 α-syn 聚集引起的潜在分子和生物学变化。我们确定了蛋白质组中的重大变化,这些变化与这些神经元中形成的大型路易体样 α-syn 聚集相吻合。我们利用基于蛋白质-蛋白质相互作用(PPI)的网络分析,确定了调节可能失调的特定生物通路的关键蛋白质群,并确定了调节蛋白质稳态(proteostasis)的几种机制。蛋白质组中观察到的变化可能包括α-syn聚集引起的平衡补偿和失调,进一步了解这两个过程及其在α-syn相关蛋白稳态中的作用,可能有助于改进对帕金森病及相关疾病患者的治疗方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1