Sleep-driven prefrontal cortex coordinates temporal action and multimodal integration.

IF 3.3 3区 医学 Q2 NEUROSCIENCES Molecular Brain Pub Date : 2025-01-23 DOI:10.1186/s13041-025-01175-0
Ahmed Z Ibrahim, Kareem Abdou, Masanori Nomoto, Kaori Yamada-Nomoto, Reiko Okubo-Suzuki, Kaoru Inokuchi
{"title":"Sleep-driven prefrontal cortex coordinates temporal action and multimodal integration.","authors":"Ahmed Z Ibrahim, Kareem Abdou, Masanori Nomoto, Kaori Yamada-Nomoto, Reiko Okubo-Suzuki, Kaoru Inokuchi","doi":"10.1186/s13041-025-01175-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive processes such as action planning and decision-making require the integration of multiple sensory modalities in response to temporal cues, yet the underlying mechanism is not fully understood. Sleep has a crucial role for memory consolidation and promoting cognitive flexibility. Our aim is to identify the role of sleep in integrating different modalities to enhance cognitive flexibility and temporal task execution while identifying the specific brain regions that mediate this process. We have designed \"Auditory-Gated Patience-to-Action\" Task in which mice should process different auditory signals before action execution as well as analyzing the visual inputs for feedback of their action. Mice could learn the task rule and apply it only after sleeping period and could keep the performance constant across sessions. c-fos positive cells showed the involvement of prelimbic cortex (PrL) during task execution. Chemo-genetic inhibition verified that PrL is required for proper signal response and action timing. These findings emphasize that sleep and cortical activity are keys for cognitive flexibility in adapting to different modalities.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"4"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01175-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cognitive processes such as action planning and decision-making require the integration of multiple sensory modalities in response to temporal cues, yet the underlying mechanism is not fully understood. Sleep has a crucial role for memory consolidation and promoting cognitive flexibility. Our aim is to identify the role of sleep in integrating different modalities to enhance cognitive flexibility and temporal task execution while identifying the specific brain regions that mediate this process. We have designed "Auditory-Gated Patience-to-Action" Task in which mice should process different auditory signals before action execution as well as analyzing the visual inputs for feedback of their action. Mice could learn the task rule and apply it only after sleeping period and could keep the performance constant across sessions. c-fos positive cells showed the involvement of prelimbic cortex (PrL) during task execution. Chemo-genetic inhibition verified that PrL is required for proper signal response and action timing. These findings emphasize that sleep and cortical activity are keys for cognitive flexibility in adapting to different modalities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
期刊最新文献
Surgery impairs glymphatic activity and cognitive function in aged mice. Correction: A simple and reliable method for claustrum localization across age in mice. Sleep-driven prefrontal cortex coordinates temporal action and multimodal integration. The causal relationship between steroid hormones and risk of stroke: evidence from a two-sample Mendelian randomization study. Distribution and functional significance of KLF15 in mouse cerebellum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1