{"title":"Estimating ancestral ranges and biogeographical processes in early hominins","authors":"Yeganeh Sekhavati , David Strait","doi":"10.1016/j.jhevol.2024.103547","DOIUrl":null,"url":null,"abstract":"<div><p>Historical biogeography provides crucial insights into understanding the evolutionary history of hominins. We applied maximum-likelihood and biogeographical stochastic mapping to infer the ancestral ranges of hominins and estimate the frequency of biogeographical events. These events were inferred using two time-calibrated phylogenetic trees that differ in the position of <em>Australopithecus sediba</em>. Results suggest that regardless of which phylogeny was selected, Northcentral Africa was the preferred ancestral region for the ancestor of the <em>Homo</em>–<em>Pan</em> clade, as well as the ancestor of <em>Sahelanthropus</em> and later hominins. The northern and middle part of eastern Africa was the preferred ancestral region for several clades originating at subsequent deep nodes of the trees (∼5–4 Ma). The choice of tree topology had one important effect on results: whether hominin ancestors appearing after ∼4 Ma were widespread or endemic. These different patterns highlight the biogeographic significance of the phylogenetic relationships of <em>A. sediba.</em> Overall, the results showed that dispersal, local extinction, and sympatry played vital roles in creating the hominin distribution, whereas vicariance and jump dispersal were not as common. The results suggested symmetry in the directionality of dispersals. Distance probably influenced how rapidly taxa colonized a new region, and dispersals often followed the closest path. These findings are potentially impacted by the imperfection of the fossil record, suggesting that the results should be interpreted cautiously.</p></div>","PeriodicalId":54805,"journal":{"name":"Journal of Human Evolution","volume":"191 ","pages":"Article 103547"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Evolution","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047248424000551","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Historical biogeography provides crucial insights into understanding the evolutionary history of hominins. We applied maximum-likelihood and biogeographical stochastic mapping to infer the ancestral ranges of hominins and estimate the frequency of biogeographical events. These events were inferred using two time-calibrated phylogenetic trees that differ in the position of Australopithecus sediba. Results suggest that regardless of which phylogeny was selected, Northcentral Africa was the preferred ancestral region for the ancestor of the Homo–Pan clade, as well as the ancestor of Sahelanthropus and later hominins. The northern and middle part of eastern Africa was the preferred ancestral region for several clades originating at subsequent deep nodes of the trees (∼5–4 Ma). The choice of tree topology had one important effect on results: whether hominin ancestors appearing after ∼4 Ma were widespread or endemic. These different patterns highlight the biogeographic significance of the phylogenetic relationships of A. sediba. Overall, the results showed that dispersal, local extinction, and sympatry played vital roles in creating the hominin distribution, whereas vicariance and jump dispersal were not as common. The results suggested symmetry in the directionality of dispersals. Distance probably influenced how rapidly taxa colonized a new region, and dispersals often followed the closest path. These findings are potentially impacted by the imperfection of the fossil record, suggesting that the results should be interpreted cautiously.
期刊介绍:
The Journal of Human Evolution concentrates on publishing the highest quality papers covering all aspects of human evolution. The central focus is aimed jointly at paleoanthropological work, covering human and primate fossils, and at comparative studies of living species, including both morphological and molecular evidence. These include descriptions of new discoveries, interpretative analyses of new and previously described material, and assessments of the phylogeny and paleobiology of primate species. Submissions should address issues and questions of broad interest in paleoanthropology.