{"title":"Mudrock wettability at pressure and temperature conditions for CO2 geological storage","authors":"Mohamed M. Awad, D. Nicolas Espinoza","doi":"10.1016/j.ijggc.2024.104160","DOIUrl":null,"url":null,"abstract":"<div><p>Structural trapping provided by seals is one of the key components of CO<sub>2</sub> geological storage systems. Clay-rich caprocks and fault gouge are expected to be water-wet at supercritical CO<sub>2</sub> conditions and to create a positive capillary pressure <span><math><mrow><msub><mi>P</mi><mrow><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></msub><mo>−</mo><mspace></mspace><msub><mi>P</mi><mi>w</mi></msub><mo>></mo><mn>0</mn><mspace></mspace></mrow></math></span>MPa to ensure trapping of buoyant CO<sub>2</sub>. This paper presents the results of water imbibition experiments in resedimented clay mudrocks immersed in supercritical CO<sub>2</sub> at temperature <em>T</em> ≥ 60 °C and pressure <span><math><msub><mi>P</mi><mrow><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></msub></math></span> ≥ 25 MPa. The samples used in this work include kaolinite clay and Anahuac shale from the Gulf of Mexico Coast. Additional validation tests include Berea sandstone and silane-treated Berea sandstone. The results show spontaneous and rapid imbibition of water droplets into resedimented and rock samples initially saturated with wet supercritical CO<sub>2</sub> for all cases. This outcome provides indirect evidence that typical siliciclastic caprock building minerals remain water-wet to CO<sub>2</sub> at typical storage pressure and temperature conditions. The results and analysis indicate that siliciclastic caprock and fault gouge are expected to develop a positive capillary entry and breakthrough pressure to hold buoyant CO<sub>2</sub> by capillary forces. These results validate expectations of buoyant CO<sub>2</sub> structural trapping and field observations from natural analogues.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"135 ","pages":"Article 104160"},"PeriodicalIF":4.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624001038","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Structural trapping provided by seals is one of the key components of CO2 geological storage systems. Clay-rich caprocks and fault gouge are expected to be water-wet at supercritical CO2 conditions and to create a positive capillary pressure MPa to ensure trapping of buoyant CO2. This paper presents the results of water imbibition experiments in resedimented clay mudrocks immersed in supercritical CO2 at temperature T ≥ 60 °C and pressure ≥ 25 MPa. The samples used in this work include kaolinite clay and Anahuac shale from the Gulf of Mexico Coast. Additional validation tests include Berea sandstone and silane-treated Berea sandstone. The results show spontaneous and rapid imbibition of water droplets into resedimented and rock samples initially saturated with wet supercritical CO2 for all cases. This outcome provides indirect evidence that typical siliciclastic caprock building minerals remain water-wet to CO2 at typical storage pressure and temperature conditions. The results and analysis indicate that siliciclastic caprock and fault gouge are expected to develop a positive capillary entry and breakthrough pressure to hold buoyant CO2 by capillary forces. These results validate expectations of buoyant CO2 structural trapping and field observations from natural analogues.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.