Merged and Gridded GPM and Atmospheric River Data Product

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Earth and Space Science Pub Date : 2024-05-23 DOI:10.1029/2023EA003333
Marian E. Mateling, Claire Pettersen, Kyle Mattingly, Sarah Ringerud
{"title":"Merged and Gridded GPM and Atmospheric River Data Product","authors":"Marian E. Mateling,&nbsp;Claire Pettersen,&nbsp;Kyle Mattingly,&nbsp;Sarah Ringerud","doi":"10.1029/2023EA003333","DOIUrl":null,"url":null,"abstract":"<p>The Global Precipitation Measurement (GPM) Mission Core Observatory satellite launched in 2014 as a joint mission between National Aeronautics and Space Administration (NASA) and JAXA. Global Precipitation Measurement (GPM) has, since that time, provided continuous, valuable dual-frequency radar and passive microwave radiometer observations. Here, we introduce a gridded data set of collocated GPM Core Observatory observational products merged with a reanalysis-derived Atmospheric river (AR) data set in the North Atlantic and North Pacific sectors. The three data sets that are merged and gridded are: (a) the NASA Goddard Profiling (GPROF) precipitation product, which uses GPM passive microwave radiometer observations to derive surface precipitation rates, (b) a water vapor data product derived from the GPM Core Observatory radiometer, provided by Remote Sensing Systems (RSS), and (c) the Mattingly et al. (2018, https://doi.org/10.1029/2018jd028714) AR data set that is specifically tuned to the high-latitude regions. This novel merged data set spans from May 2014 to December 2022 with plans to update annually through 2026 at minimum. This gridded product combines RSS passive water vapor and precipitation estimates with coincident AR detection. This data product benefits the scientific community by providing (a) user-friendly gridded satellite data compared to standard satellite data sets, while maintaining high temporal resolution, and (b) coincident satellite observations to assess the link between ARs and precipitation.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003333","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EA003333","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Global Precipitation Measurement (GPM) Mission Core Observatory satellite launched in 2014 as a joint mission between National Aeronautics and Space Administration (NASA) and JAXA. Global Precipitation Measurement (GPM) has, since that time, provided continuous, valuable dual-frequency radar and passive microwave radiometer observations. Here, we introduce a gridded data set of collocated GPM Core Observatory observational products merged with a reanalysis-derived Atmospheric river (AR) data set in the North Atlantic and North Pacific sectors. The three data sets that are merged and gridded are: (a) the NASA Goddard Profiling (GPROF) precipitation product, which uses GPM passive microwave radiometer observations to derive surface precipitation rates, (b) a water vapor data product derived from the GPM Core Observatory radiometer, provided by Remote Sensing Systems (RSS), and (c) the Mattingly et al. (2018, https://doi.org/10.1029/2018jd028714) AR data set that is specifically tuned to the high-latitude regions. This novel merged data set spans from May 2014 to December 2022 with plans to update annually through 2026 at minimum. This gridded product combines RSS passive water vapor and precipitation estimates with coincident AR detection. This data product benefits the scientific community by providing (a) user-friendly gridded satellite data compared to standard satellite data sets, while maintaining high temporal resolution, and (b) coincident satellite observations to assess the link between ARs and precipitation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合并和网格化的 GPM 和大气河流数据产品
全球降水测量(GPM)任务核心观测站卫星于2014年发射,是美国国家航空航天局(NASA)和日本宇宙航空研究开发机构的一项联合任务。自此,全球降水测量(GPM)提供了连续、宝贵的双频雷达和被动微波辐射计观测数据。在此,我们将介绍一个网格数据集,该数据集由 GPM 核心观测站的观测产品与北大西洋和北太平洋扇区的大气河(AR)再分析数据集合并而成。合并和网格化的三个数据集是(a) NASA 戈达德剖面(GPROF)降水产品,该产品利用 GPM 被动微波辐射计观测数据得出地表降水率;(b) 由遥感系统(RSS)提供的源自 GPM 核心观测站辐射计的水汽数据产品;(c) Mattingly 等人(2018 年,https://doi.org/10.1029/2018jd028714)的 AR 数据集,该数据集专门针对高纬度地区进行了调整。这个新颖的合并数据集的时间跨度为 2014 年 5 月至 2022 年 12 月,并计划每年至少更新一次,直至 2026 年。该网格产品结合了 RSS 被动水汽和降水估算值以及相吻合的 AR 探测。该数据产品有利于科学界:(a)与标准卫星数据集相比,提供方便用户的网格化卫星数据,同时保持高时间分辨率;(b)提供重合卫星观测数据,以评估AR与降水之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
期刊最新文献
Reconstruction of Nearshore Surface Gravity Wave Heights From Distributed Acoustic Sensing Data The Self-Calibrating Tilt Accelerometer: A Method for Observing Tilt and Correcting Drift With a Triaxial Accelerometer A Rare Tropical Cyclone Associated With Southwest Monsoon Over the Northern Part of the South China Sea—Tropical Storm Maliksi Improving Interpolating Accuracy of Weighted Mean Temperature by Using a Novel Lapse Rate Model in Compact VMF1 Product A Scalable, Cloud-Based Workflow for Spectrally-Attributed ICESat-2 Bathymetry With Application to Benthic Habitat Mapping Using Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1