Close linkage between available and microbial biomass phosphorus in the rhizosphere of alpine coniferous forests along an altitudinal gradient

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-22 DOI:10.1016/j.rhisph.2024.100904
Min Li , Xi He , Peipei Zhang , Ruihong Wang , Jipeng Wang , Xinjun Zhang , Huajun Yin
{"title":"Close linkage between available and microbial biomass phosphorus in the rhizosphere of alpine coniferous forests along an altitudinal gradient","authors":"Min Li ,&nbsp;Xi He ,&nbsp;Peipei Zhang ,&nbsp;Ruihong Wang ,&nbsp;Jipeng Wang ,&nbsp;Xinjun Zhang ,&nbsp;Huajun Yin","doi":"10.1016/j.rhisph.2024.100904","DOIUrl":null,"url":null,"abstract":"<div><p>The rhizosphere is a hotspot of soil phosphorus (P) transformation, which profoundly influences the P status of plants. Although P is projected to limit the ability of forests to serve as a carbon sink, it remains unclear how rhizosphere P availability responds to changing environments in alpine forests. Here, we investigated changes in rhizosphere available P across a series of altitudinal bands (2850 m, 2950 m, 3060 m and 3200 m) in alpine forests and examined the potential regulators of rhizosphere P availability, including temperature and soil biotic and abiotic properties. The results showed that rhizosphere P availability decreased up to the 3060 m site but then increased at the 3200 m site. A structural equation model showed that temperature and soil properties (pH and organic carbon content) indirectly affected rhizosphere available P through amorphous iron/aluminum oxides and microbial biomass P, which had negative and positive effects on rhizosphere available P, respectively. Thus, sorption by soil minerals and turnover of microbial biomass P may be key processes regulating P availability. In contrast, soil organic acids and acid phosphatase, which may promote the release of P by ligand exchange and mineralization, respectively, did not show a positive relationship with rhizosphere available P. Overall, our findings highlight the potential role of microbial biomass as a labile P pool that provides readily available P by turnover and protects P from sorption by soil minerals, which could help in elucidating the mechanisms by which plants maintain their P nutrient supply in alpine ecosystems under environmental changes.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219824000594","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The rhizosphere is a hotspot of soil phosphorus (P) transformation, which profoundly influences the P status of plants. Although P is projected to limit the ability of forests to serve as a carbon sink, it remains unclear how rhizosphere P availability responds to changing environments in alpine forests. Here, we investigated changes in rhizosphere available P across a series of altitudinal bands (2850 m, 2950 m, 3060 m and 3200 m) in alpine forests and examined the potential regulators of rhizosphere P availability, including temperature and soil biotic and abiotic properties. The results showed that rhizosphere P availability decreased up to the 3060 m site but then increased at the 3200 m site. A structural equation model showed that temperature and soil properties (pH and organic carbon content) indirectly affected rhizosphere available P through amorphous iron/aluminum oxides and microbial biomass P, which had negative and positive effects on rhizosphere available P, respectively. Thus, sorption by soil minerals and turnover of microbial biomass P may be key processes regulating P availability. In contrast, soil organic acids and acid phosphatase, which may promote the release of P by ligand exchange and mineralization, respectively, did not show a positive relationship with rhizosphere available P. Overall, our findings highlight the potential role of microbial biomass as a labile P pool that provides readily available P by turnover and protects P from sorption by soil minerals, which could help in elucidating the mechanisms by which plants maintain their P nutrient supply in alpine ecosystems under environmental changes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沿海拔梯度高山针叶林根瘤层中可利用磷与微生物生物量磷之间的密切联系
根瘤层是土壤磷(P)转化的热点,它对植物的磷状况影响深远。虽然预计磷会限制森林作为碳汇的能力,但根圈磷的可用性如何应对高山森林中不断变化的环境仍不清楚。在这里,我们研究了高山森林中一系列海拔带(2850 米、2950 米、3060 米和 3200 米)根瘤层可利用钾的变化,并考察了根瘤层可利用钾的潜在调节因素,包括温度、土壤生物和非生物特性。结果表明,在海拔 3060 米以下的地点,根圈钾的可利用性降低,而在海拔 3200 米的地点,根圈钾的可利用性提高。结构方程模型显示,温度和土壤特性(pH 值和有机碳含量)通过无定形铁/铝氧化物和微生物生物量 P 间接影响根瘤层可利用钾,而无定形铁/铝氧化物和微生物生物量 P 分别对根瘤层可利用钾有负面和正面影响。因此,土壤矿物质的吸附作用和微生物生物量钾的周转可能是调节钾可用性的关键过程。总之,我们的研究结果凸显了微生物生物质作为一个可变型钾库的潜在作用,它通过周转提供随时可用的钾,并保护钾不被土壤矿物质吸附,这有助于阐明高寒生态系统中植物在环境变化下维持钾养分供应的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1