{"title":"Plant-microbial interplay for organic nitrogen mediated by functional specificity of root compartments","authors":"Guoting Shen , Andrey Guber , Sajedeh Khosrozadeh , Negar Ghaderi , Alexandra Kravchenko , Evgenia Blagodatskaya","doi":"10.1016/j.rhisph.2025.101024","DOIUrl":null,"url":null,"abstract":"<div><div>The organic form of nitrogen (N) is a critical intermediate in mutualistic and competitive root-microbial interactions, mediated by extracellular enzymes. Visualization of the hotspots of organic N and proteolytic activity might be valuable for revealing root functional specificity in N acquisition and transformation at the level of individual roots and compartments. For the first time, we used time-lapse amino-mapping and zymography to co-localize and map the spatial distribution of amino-N and leucine aminopeptidase (LAP) activity in the soil and different root parts of maize (<em>Zea mays</em> L.). Amino-N distribution was mainly associated with seminal roots and root tips, where it overlapped with LAP activity hotspots. In the lateral roots and bulk soil, however, LAP activity was decoupled from amino-N. Distinct functional traits revealed themselves as the highest amino-N content and LAP activity in seminal root tips and as the largest relative extent of the rhizosphere in lateral root tips. Co-localized amino-N and LAP activities highlighted different nutrient acquisition strategies mediated by root-microbe interactions, depending on the root compartment. Seminal roots and their tips appeared to adopt mutualistic strategies, potentially attracting root-associated microorganisms through releasing oligo- and polypeptides. In contrast, lateral roots, with amino-N detected only at their tips, demonstrated stronger N competition, relying on the enzyme activity of the rhizosphere microbial community for N acquisition. These insights emphasized the role of root functional specialization in shaping plant-microbe interactions, offering pathways to enhance nutrient use efficiency.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"33 ","pages":"Article 101024"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizosphere","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219825000096","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The organic form of nitrogen (N) is a critical intermediate in mutualistic and competitive root-microbial interactions, mediated by extracellular enzymes. Visualization of the hotspots of organic N and proteolytic activity might be valuable for revealing root functional specificity in N acquisition and transformation at the level of individual roots and compartments. For the first time, we used time-lapse amino-mapping and zymography to co-localize and map the spatial distribution of amino-N and leucine aminopeptidase (LAP) activity in the soil and different root parts of maize (Zea mays L.). Amino-N distribution was mainly associated with seminal roots and root tips, where it overlapped with LAP activity hotspots. In the lateral roots and bulk soil, however, LAP activity was decoupled from amino-N. Distinct functional traits revealed themselves as the highest amino-N content and LAP activity in seminal root tips and as the largest relative extent of the rhizosphere in lateral root tips. Co-localized amino-N and LAP activities highlighted different nutrient acquisition strategies mediated by root-microbe interactions, depending on the root compartment. Seminal roots and their tips appeared to adopt mutualistic strategies, potentially attracting root-associated microorganisms through releasing oligo- and polypeptides. In contrast, lateral roots, with amino-N detected only at their tips, demonstrated stronger N competition, relying on the enzyme activity of the rhizosphere microbial community for N acquisition. These insights emphasized the role of root functional specialization in shaping plant-microbe interactions, offering pathways to enhance nutrient use efficiency.
RhizosphereAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
5.70
自引率
8.10%
发文量
155
审稿时长
29 days
期刊介绍:
Rhizosphere aims to advance the frontier of our understanding of plant-soil interactions. Rhizosphere is a multidisciplinary journal that publishes research on the interactions between plant roots, soil organisms, nutrients, and water. Except carbon fixation by photosynthesis, plants obtain all other elements primarily from soil through roots.
We are beginning to understand how communications at the rhizosphere, with soil organisms and other plant species, affect root exudates and nutrient uptake. This rapidly evolving subject utilizes molecular biology and genomic tools, food web or community structure manipulations, high performance liquid chromatography, isotopic analysis, diverse spectroscopic analytics, tomography and other microscopy, complex statistical and modeling tools.