Simulated plant-mediated oxygen input has strong impacts on fine-scale porewater biogeochemistry and weak impacts on integrated methane fluxes in coastal wetlands
Yongli Zhou, Teri O’Meara, Zoe G. Cardon, Jiaze Wang, Benjamin N. Sulman, Anne E. Giblin, Inke Forbrich
{"title":"Simulated plant-mediated oxygen input has strong impacts on fine-scale porewater biogeochemistry and weak impacts on integrated methane fluxes in coastal wetlands","authors":"Yongli Zhou, Teri O’Meara, Zoe G. Cardon, Jiaze Wang, Benjamin N. Sulman, Anne E. Giblin, Inke Forbrich","doi":"10.1007/s10533-024-01145-z","DOIUrl":null,"url":null,"abstract":"<div><p>Methane (CH<sub>4</sub>) emissions from wetland ecosystems are controlled by redox conditions in the soil, which are currently underrepresented in Earth system models. Plant-mediated radial oxygen loss (ROL) can increase soil O<sub>2</sub> availability, affect local redox conditions, and cause heterogeneous distribution of redox-sensitive chemical species at the root scale, which would affect CH<sub>4</sub> emissions integrated over larger scales. In this study, we used a subsurface geochemical simulator (PFLOTRAN) to quantify the effects of incorporating either spatially homogeneous ROL or more complex heterogeneous ROL on model predictions of porewater solute concentration depth profiles (dissolved organic carbon, methane, sulfate, sulfide) and column integrated CH<sub>4</sub> fluxes for a tidal coastal wetland. From the heterogeneous ROL simulation, we obtained 18% higher column averaged CH<sub>4</sub> concentration at the rooting zone but 5% lower total CH<sub>4</sub> flux compared to simulations of the homogeneous ROL or without ROL. This difference is because lower CH<sub>4</sub> concentrations occurred in the same rhizosphere volume that was directly connected with plant-mediated transport of CH<sub>4</sub> from the rooting zone to the atmosphere. Sensitivity analysis indicated that the impacts of heterogeneous ROL on model predictions of porewater oxygen and sulfide concentrations will be more important under conditions of higher ROL fluxes or more heterogeneous root distribution (lower root densities). Despite the small impact on predicted CH<sub>4</sub> emissions, the simulated ROL drastically reduced porewater concentrations of sulfide, an effective phytotoxin, indicating that incorporating ROL combined with sulfur cycling into ecosystem models could potentially improve predictions of plant productivity in coastal wetland ecosystems.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 7","pages":"945 - 963"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01145-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01145-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Methane (CH4) emissions from wetland ecosystems are controlled by redox conditions in the soil, which are currently underrepresented in Earth system models. Plant-mediated radial oxygen loss (ROL) can increase soil O2 availability, affect local redox conditions, and cause heterogeneous distribution of redox-sensitive chemical species at the root scale, which would affect CH4 emissions integrated over larger scales. In this study, we used a subsurface geochemical simulator (PFLOTRAN) to quantify the effects of incorporating either spatially homogeneous ROL or more complex heterogeneous ROL on model predictions of porewater solute concentration depth profiles (dissolved organic carbon, methane, sulfate, sulfide) and column integrated CH4 fluxes for a tidal coastal wetland. From the heterogeneous ROL simulation, we obtained 18% higher column averaged CH4 concentration at the rooting zone but 5% lower total CH4 flux compared to simulations of the homogeneous ROL or without ROL. This difference is because lower CH4 concentrations occurred in the same rhizosphere volume that was directly connected with plant-mediated transport of CH4 from the rooting zone to the atmosphere. Sensitivity analysis indicated that the impacts of heterogeneous ROL on model predictions of porewater oxygen and sulfide concentrations will be more important under conditions of higher ROL fluxes or more heterogeneous root distribution (lower root densities). Despite the small impact on predicted CH4 emissions, the simulated ROL drastically reduced porewater concentrations of sulfide, an effective phytotoxin, indicating that incorporating ROL combined with sulfur cycling into ecosystem models could potentially improve predictions of plant productivity in coastal wetland ecosystems.
湿地生态系统的甲烷(CH4)排放受土壤氧化还原条件的控制,而目前地球系统模型中对氧化还原条件的反映不足。植物介导的径向氧损失(ROL)可增加土壤中氧气的可用性,影响局部氧化还原条件,并导致对氧化还原敏感的化学物种在根系尺度上的异质分布,这将影响更大尺度上的综合 CH4 排放。在这项研究中,我们使用了一种地下地球化学模拟器(PFLOTRAN),以量化加入空间均质 ROL 或更复杂的异质 ROL 对潮汐沿岸湿地的孔隙水溶质浓度深度剖面(溶解有机碳、甲烷、硫酸盐、硫化物)和柱状综合 CH4 通量模型预测的影响。与同质 ROL 模拟或无 ROL 模拟相比,通过异质 ROL 模拟,根区的柱平均甲烷浓度提高了 18%,但甲烷总通量却降低了 5%。出现这种差异的原因是,在与植物介导的从生根区到大气的甲烷迁移直接相关的同一根圈体积中,甲烷浓度较低。敏感性分析表明,在 ROL 通量较高或根系分布较不均匀(根系密度较低)的条件下,异质性 ROL 对模型预测的孔隙水氧气和硫化物浓度的影响会更大。尽管对预测的甲烷排放量影响较小,但模拟的 ROL 却大大降低了硫化物(一种有效的植物毒素)在孔隙水中的浓度,这表明将 ROL 与硫循环结合到生态系统模型中,有可能改善对沿岸湿地生态系统中植物生产力的预测。
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.