Rhoda Afriyie Mensah , Dong Wang , Vigneshwaran Shanmugam, Gabriel Sas, Michael Försth, Oisik Das
{"title":"Fire behaviour of biochar-based cementitious composites","authors":"Rhoda Afriyie Mensah , Dong Wang , Vigneshwaran Shanmugam, Gabriel Sas, Michael Försth, Oisik Das","doi":"10.1016/j.jcomc.2024.100471","DOIUrl":null,"url":null,"abstract":"<div><p>The study aimed to test the hypothesis that biochar's unique properties, such as its microporous structure, can enhance concrete's resilience to high temperatures. Despite expectations of reduced crack formation and enhanced fire resistance, the experimental results revealed a limited impact on concrete's fire behaviour. The investigation involved the use of two biochar types, fine and coarse biochar as replacements for cement and aggregates, respectively. Fine biochar exhibited higher water absorption and Young's modulus than coarse biochar, but both resisted ignition at 35 kW/m<sup>2</sup> radiative heat flux and had peak heat release rates below 40 kW/m<sup>2</sup>. Incorporating these biochars at varying weight percentages (10, 15, and 20 wt.%) into concrete led to a gradual decline in compressive and tensile strength due to reduced binding ability with increased biochar content. Exposure to 1000 °C compromised mechanical properties across all the samples. However, the biochar concrete maintained compressive strength (compared to the control) with up to 20 wt.% biochar as a fine aggregate substitute after exposure to 600 °C, and as a cement replacement after exposure to 200 °C. This substitution also yielded a significant reduction in CO<sub>2</sub> emissions (50 % reduction as the biochar loading amount doubled) from concrete manufacturing, showcasing biochar's potential for sustainable construction practices. Despite not fully supporting the initial hypothesis, the study demonstrated biochar's viability in reducing carbon footprint while maintaining concrete strength under certain fire conditions.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"14 ","pages":"Article 100471"},"PeriodicalIF":5.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000410/pdfft?md5=de6e6ac077343e67aa30caad44b8f23e&pid=1-s2.0-S2666682024000410-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The study aimed to test the hypothesis that biochar's unique properties, such as its microporous structure, can enhance concrete's resilience to high temperatures. Despite expectations of reduced crack formation and enhanced fire resistance, the experimental results revealed a limited impact on concrete's fire behaviour. The investigation involved the use of two biochar types, fine and coarse biochar as replacements for cement and aggregates, respectively. Fine biochar exhibited higher water absorption and Young's modulus than coarse biochar, but both resisted ignition at 35 kW/m2 radiative heat flux and had peak heat release rates below 40 kW/m2. Incorporating these biochars at varying weight percentages (10, 15, and 20 wt.%) into concrete led to a gradual decline in compressive and tensile strength due to reduced binding ability with increased biochar content. Exposure to 1000 °C compromised mechanical properties across all the samples. However, the biochar concrete maintained compressive strength (compared to the control) with up to 20 wt.% biochar as a fine aggregate substitute after exposure to 600 °C, and as a cement replacement after exposure to 200 °C. This substitution also yielded a significant reduction in CO2 emissions (50 % reduction as the biochar loading amount doubled) from concrete manufacturing, showcasing biochar's potential for sustainable construction practices. Despite not fully supporting the initial hypothesis, the study demonstrated biochar's viability in reducing carbon footprint while maintaining concrete strength under certain fire conditions.