Basalt-silk fiber reinforced PLA composites: Effect of graphene fillers and stacking sequence

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Composites Part C Open Access Pub Date : 2025-01-27 DOI:10.1016/j.jcomc.2025.100564
Hasibur R. Hamim , Tanzim Hasan , Farhan Shahriar , Sazidur Rahman Chowdhury , Md.Anisur Rahman , Mohammad Nasim , Mohammad Ahsan Habib
{"title":"Basalt-silk fiber reinforced PLA composites: Effect of graphene fillers and stacking sequence","authors":"Hasibur R. Hamim ,&nbsp;Tanzim Hasan ,&nbsp;Farhan Shahriar ,&nbsp;Sazidur Rahman Chowdhury ,&nbsp;Md.Anisur Rahman ,&nbsp;Mohammad Nasim ,&nbsp;Mohammad Ahsan Habib","doi":"10.1016/j.jcomc.2025.100564","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the development of biocompatible composites using strong basalt fibers and ductile silk fibers, and a polylactic acid (PLA) matrix. Five distinct stacking sequences were fabricated via a replicable hand layup and vacuum bagging technique, with alternating layer specimens (ALT) further enhanced by the addition of graphene nanoplatelets (GNPs) at 3, 6, and 9 wt.% of the PLA matrix. The composites were characterized for tensile, flexural, impact, and interlaminar shear strengths, damping properties, electrical conductivity, moisture absorption, and morphological features. The ALT configuration exhibited superior performance, with its multi-layered structure effectively mitigating delamination. ALT composites without GNPs achieved the highest tensile strength (136.54 MPa), tensile modulus (3.42 GPa), interlaminar shear strength (0.48 MPa), impact energy (36.84 kJ/m²), and flexural strength (18.06 MPa), predominantly failing via delamination. SEM analysis identified the basalt fiber-PLA interface as a critical failure site. The incorporation of 6 wt.% GNP enhanced damping by 1.54 times, but the composites remained nonconductive due to graphene agglomeration and lack of a conductive network. These energy-absorbing, environmentally sustainable composites show promise for multifaceted applications with reduced ecological impact.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"16 ","pages":"Article 100564"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the development of biocompatible composites using strong basalt fibers and ductile silk fibers, and a polylactic acid (PLA) matrix. Five distinct stacking sequences were fabricated via a replicable hand layup and vacuum bagging technique, with alternating layer specimens (ALT) further enhanced by the addition of graphene nanoplatelets (GNPs) at 3, 6, and 9 wt.% of the PLA matrix. The composites were characterized for tensile, flexural, impact, and interlaminar shear strengths, damping properties, electrical conductivity, moisture absorption, and morphological features. The ALT configuration exhibited superior performance, with its multi-layered structure effectively mitigating delamination. ALT composites without GNPs achieved the highest tensile strength (136.54 MPa), tensile modulus (3.42 GPa), interlaminar shear strength (0.48 MPa), impact energy (36.84 kJ/m²), and flexural strength (18.06 MPa), predominantly failing via delamination. SEM analysis identified the basalt fiber-PLA interface as a critical failure site. The incorporation of 6 wt.% GNP enhanced damping by 1.54 times, but the composites remained nonconductive due to graphene agglomeration and lack of a conductive network. These energy-absorbing, environmentally sustainable composites show promise for multifaceted applications with reduced ecological impact.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
期刊最新文献
Experimental study on a new generation of recycled composite laminates Effect of fiber orientation on the strength of thermoplastic composite tubes subject to four-point bending Post-joining thermal characteristics and repair integrity of carbon fiber-reinforced thermoplastic composites during ultrasonic reconsolidation at 20 kHz Monotonic and cyclic compressive performance of self-monitoring MWCNT/PA12 cellular composites manufactured by selective laser sintering Basalt-silk fiber reinforced PLA composites: Effect of graphene fillers and stacking sequence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1