{"title":"Nonparametric CD-CAT for multiple-choice items: Item selection method and Q-optimality.","authors":"Yu Wang, Chia-Yi Chiu, Hans Friedrich Köhn","doi":"10.1111/bmsp.12350","DOIUrl":null,"url":null,"abstract":"<p><p>Computerized adaptive testing for cognitive diagnosis (CD-CAT) achieves remarkable estimation efficiency and accuracy by adaptively selecting and then administering items tailored to each examinee. The process of item selection stands as a pivotal component of a CD-CAT algorithm, with various methods having been developed for binary responses. However, multiple-choice (MC) items, an important item type that allows for the extraction of richer diagnostic information from incorrect answers, have been underemphasized. Currently, the Jensen-Shannon divergence (JSD) index introduced by Yigit et al. (Applied Psychological Measurement, 2019, 43, 388) is the only item selection method exclusively designed for MC items. However, the JSD index requires a large sample to calibrate item parameters, which may be infeasible when there is only a small or no calibration sample. To bridge this gap, the study first proposes a nonparametric item selection method for MC items (MC-NPS) by implementing novel discrimination power that measures an item's ability to effectively distinguish among different attribute profiles. A Q-optimal procedure for MC items is also developed to improve the classification during the initial phase of a CD-CAT algorithm. The effectiveness and efficiency of the two proposed algorithms were confirmed by simulation studies.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12350","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Computerized adaptive testing for cognitive diagnosis (CD-CAT) achieves remarkable estimation efficiency and accuracy by adaptively selecting and then administering items tailored to each examinee. The process of item selection stands as a pivotal component of a CD-CAT algorithm, with various methods having been developed for binary responses. However, multiple-choice (MC) items, an important item type that allows for the extraction of richer diagnostic information from incorrect answers, have been underemphasized. Currently, the Jensen-Shannon divergence (JSD) index introduced by Yigit et al. (Applied Psychological Measurement, 2019, 43, 388) is the only item selection method exclusively designed for MC items. However, the JSD index requires a large sample to calibrate item parameters, which may be infeasible when there is only a small or no calibration sample. To bridge this gap, the study first proposes a nonparametric item selection method for MC items (MC-NPS) by implementing novel discrimination power that measures an item's ability to effectively distinguish among different attribute profiles. A Q-optimal procedure for MC items is also developed to improve the classification during the initial phase of a CD-CAT algorithm. The effectiveness and efficiency of the two proposed algorithms were confirmed by simulation studies.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.