{"title":"Regularized Bayesian algorithms for Q-matrix inference based on saturated cognitive diagnosis modelling.","authors":"Yi Jin, Jinsong Chen","doi":"10.1111/bmsp.12368","DOIUrl":null,"url":null,"abstract":"<p><p>Q-matrices are crucial components of cognitive diagnosis models (CDMs), which are used to provide diagnostic information and classify examinees according to their attribute profiles. The absence of an appropriate Q-matrix that correctly reflects item-attribute relationships often limits the widespread use of CDMs. Rather than relying on expert judgment for specification and post-hoc methods for validation, there has been a notable shift towards Q-matrix estimation by adopting Bayesian methods. Nevertheless, their dependency on Markov chain Monte Carlo (MCMC) estimation requires substantial computational burdens and their exploratory tendency is unscalable to large-scale settings. As a scalable and efficient alternative, this study introduces the partially confirmatory framework within a saturated CDM, where the Q-matrix can be partially defined by experts and partially inferred from data. To address the dual needs of accuracy and efficiency, the proposed framework accommodates two estimation algorithms-an MCMC algorithm and a Variational Bayesian Expectation Maximization (VBEM) algorithm. This dual-channel approach extends the model's applicability across a variety of settings. Based on simulated and real data, the proposed framework demonstrated its robustness in Q-matrix inference.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12368","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Q-matrices are crucial components of cognitive diagnosis models (CDMs), which are used to provide diagnostic information and classify examinees according to their attribute profiles. The absence of an appropriate Q-matrix that correctly reflects item-attribute relationships often limits the widespread use of CDMs. Rather than relying on expert judgment for specification and post-hoc methods for validation, there has been a notable shift towards Q-matrix estimation by adopting Bayesian methods. Nevertheless, their dependency on Markov chain Monte Carlo (MCMC) estimation requires substantial computational burdens and their exploratory tendency is unscalable to large-scale settings. As a scalable and efficient alternative, this study introduces the partially confirmatory framework within a saturated CDM, where the Q-matrix can be partially defined by experts and partially inferred from data. To address the dual needs of accuracy and efficiency, the proposed framework accommodates two estimation algorithms-an MCMC algorithm and a Variational Bayesian Expectation Maximization (VBEM) algorithm. This dual-channel approach extends the model's applicability across a variety of settings. Based on simulated and real data, the proposed framework demonstrated its robustness in Q-matrix inference.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.