Influence of Gas Type on Reactive Species Formation, Antimicrobial Activity, and Cytotoxicity of Plasma-Activated Water Produced in a Coaxial DBD Reactor
F. S. Miranda, V. K. F. Tavares, D. M. Silva, N. V. M. Milhan, N. F. Azevedo Neto, M. P. Gomes, R. S. Pessoa, C. Y. Koga-Ito
{"title":"Influence of Gas Type on Reactive Species Formation, Antimicrobial Activity, and Cytotoxicity of Plasma-Activated Water Produced in a Coaxial DBD Reactor","authors":"F. S. Miranda, V. K. F. Tavares, D. M. Silva, N. V. M. Milhan, N. F. Azevedo Neto, M. P. Gomes, R. S. Pessoa, C. Y. Koga-Ito","doi":"10.1007/s11090-024-10475-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a coaxial dielectric barrier discharge (DBD) reactor was employed using various gases: compressed air (CA), helium (He), or argon (Ar) to produce plasma-activated water (PAW) from deionized water. The influence of these gases on the generation and quantification of reactive oxygen and nitrogen species (RONS) was examined. Their impact on PAW's physicochemical properties, including pH, oxygen reduction potential (ORP), and conductivity, was also assessed. In parallel, the efficacy of produced PAW against microbial species such as <i>Staphylococcus aureus</i>, <i>Escherichia coli</i>, and <i>Candida albicans</i> was evaluated, in addition to their cytotoxicity to mammalian cells. Notably, after a 10-min contact, a 99.99% reduction in <i>S. aureus</i> and <i>E. coli</i> was observed when CA and Ar were used, and reductions of 99.96% and 99.95% were seen when He was employed, respectively. For <i>C. albicans</i>, reductions of 12.05% with CA, 22.89% with Ar, and 39.76% with He was observed. After 30 min, a reduction of up to 53.41% was achieved with Ar. Additionally, PAW generated with all the gases were classified as non-cytotoxic. These findings underscore the potential of the coaxial DBD reactor system in PAW production, emphasizing its significant antimicrobial properties and low toxicity to mammalian cells.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 4","pages":"1713 - 1733"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10475-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a coaxial dielectric barrier discharge (DBD) reactor was employed using various gases: compressed air (CA), helium (He), or argon (Ar) to produce plasma-activated water (PAW) from deionized water. The influence of these gases on the generation and quantification of reactive oxygen and nitrogen species (RONS) was examined. Their impact on PAW's physicochemical properties, including pH, oxygen reduction potential (ORP), and conductivity, was also assessed. In parallel, the efficacy of produced PAW against microbial species such as Staphylococcus aureus, Escherichia coli, and Candida albicans was evaluated, in addition to their cytotoxicity to mammalian cells. Notably, after a 10-min contact, a 99.99% reduction in S. aureus and E. coli was observed when CA and Ar were used, and reductions of 99.96% and 99.95% were seen when He was employed, respectively. For C. albicans, reductions of 12.05% with CA, 22.89% with Ar, and 39.76% with He was observed. After 30 min, a reduction of up to 53.41% was achieved with Ar. Additionally, PAW generated with all the gases were classified as non-cytotoxic. These findings underscore the potential of the coaxial DBD reactor system in PAW production, emphasizing its significant antimicrobial properties and low toxicity to mammalian cells.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.