Efficient strain-gradient mixed elements using shared degrees of freedom for the discretised fields

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY International Journal for Numerical Methods in Engineering Pub Date : 2024-05-23 DOI:10.1002/nme.7536
Stefanos-Aldo Papanicolopulos
{"title":"Efficient strain-gradient mixed elements using shared degrees of freedom for the discretised fields","authors":"Stefanos-Aldo Papanicolopulos","doi":"10.1002/nme.7536","DOIUrl":null,"url":null,"abstract":"<p>A displacement-only finite-element formulation of strain-gradient models requires elements with <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {C}^1 $$</annotation>\n </semantics></math> continuous interpolation. Mixed formulations have been proposed to allow the use of more common <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {C}^0 $$</annotation>\n </semantics></math> element shape functions. These mixed formulations are based on the interpolation of two different fields, displacement and some kind of displacement gradient, with the relation between the two fields enforced using either Lagrange multipliers or penalty methods. All elements proposed in the literature for such formulations use a distinct set of degrees of freedom to discretise each field. In this work, we introduce for the first time shared degrees of freedom, that lead to a mixed formulation with a significantly better numerical performance. We describe how this novel mixed formulation can be derived, present individual elements implementing this, and discuss the significance of the results.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7536","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7536","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A displacement-only finite-element formulation of strain-gradient models requires elements with C 1 $$ {C}^1 $$ continuous interpolation. Mixed formulations have been proposed to allow the use of more common C 0 $$ {C}^0 $$ element shape functions. These mixed formulations are based on the interpolation of two different fields, displacement and some kind of displacement gradient, with the relation between the two fields enforced using either Lagrange multipliers or penalty methods. All elements proposed in the literature for such formulations use a distinct set of degrees of freedom to discretise each field. In this work, we introduce for the first time shared degrees of freedom, that lead to a mixed formulation with a significantly better numerical performance. We describe how this novel mixed formulation can be derived, present individual elements implementing this, and discuss the significance of the results.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用离散场共享自由度的高效应变梯度混合元素
应变梯度模型的纯位移有限元计算需要连续插值的元素。为了使用更常见的元素形状函数,人们提出了混合公式。这些混合公式的基础是对位移和某种位移梯度这两个不同的场进行插值,并使用拉格朗日乘法器或惩罚方法来加强这两个场之间的关系。文献中针对此类公式提出的所有要素都使用一组不同的自由度来离散每个场。在这项工作中,我们首次引入了共享自由度,从而产生了一种数值性能明显更好的混合公式。我们描述了如何得出这种新颖的混合公式,介绍了实现这种公式的各个要素,并讨论了结果的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
期刊最新文献
Issue Information Issue Information DCEM: A deep complementary energy method for linear elasticity Issue Information Featured Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1