Jaime Villa, Franz García, Rubén Jover, Ventura Martínez, José M. Armingol
{"title":"Intelligent Infrastructure for Traffic Monitoring Based on Deep Learning and Edge Computing","authors":"Jaime Villa, Franz García, Rubén Jover, Ventura Martínez, José M. Armingol","doi":"10.1155/2024/3679014","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In the field of traffic management and control systems, we are witnessing a symbiotic evolution, where intelligent infrastructure is progressively collaborating with smart vehicles to produce benefits for traffic monitoring and security, by rapidly identifying hazardous behaviours. This exponential growth is due to the rapid development of deep learning in recent years, as well as the improvements in computer vision models. These technologies allow for monitoring tasks without the need to install numerous sensors or stop the traffic, using the extensive camera network of surveillance cameras already present in worldwide roads. This study proposes a computer vision-based solution that allows for real-time processing of video streams through edge computing devices, eliminating the need for Internet connectivity or dedicated sensors. The proposed system employs deep learning algorithms and vision techniques that perform vehicle detection, classification, tracking, speed estimation, and vehicle geolocation.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3679014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3679014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of traffic management and control systems, we are witnessing a symbiotic evolution, where intelligent infrastructure is progressively collaborating with smart vehicles to produce benefits for traffic monitoring and security, by rapidly identifying hazardous behaviours. This exponential growth is due to the rapid development of deep learning in recent years, as well as the improvements in computer vision models. These technologies allow for monitoring tasks without the need to install numerous sensors or stop the traffic, using the extensive camera network of surveillance cameras already present in worldwide roads. This study proposes a computer vision-based solution that allows for real-time processing of video streams through edge computing devices, eliminating the need for Internet connectivity or dedicated sensors. The proposed system employs deep learning algorithms and vision techniques that perform vehicle detection, classification, tracking, speed estimation, and vehicle geolocation.
期刊介绍:
The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport.
It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest.
Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.