Traffic Incident Duration Prediction: A Systematic Review of Techniques

IF 2 4区 工程技术 Q2 ENGINEERING, CIVIL Journal of Advanced Transportation Pub Date : 2024-12-19 DOI:10.1155/atr/3748345
Artur Grigorev, Adriana-Simona Mihaita, Fang Chen
{"title":"Traffic Incident Duration Prediction: A Systematic Review of Techniques","authors":"Artur Grigorev,&nbsp;Adriana-Simona Mihaita,&nbsp;Fang Chen","doi":"10.1155/atr/3748345","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This systematic literature review investigates the application of machine learning (ML) techniques for predicting traffic incident durations, a crucial component of intelligent transportation systems (ITSs) aimed at mitigating congestion and enhancing environmental sustainability. Utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, we systematically analyze literature that overviews models for incident duration prediction. Our review identifies that while traditional ML models like XGBoost and Random Forest are prevalent, significant potential exists for advanced methodologies such as bilevel and hybrid frameworks. Key challenges identified include the following: data quality issues, model interpretability, and the complexities associated with high-dimensional datasets. Future research directions proposed include the following: (1) development of data fusion models that integrate heterogeneous datasets of incident reports for enhanced predictive modeling; (2) utilization of natural language processing (NLP) to extract contextual information from textual incident reports; and (3) implementation of advanced ML pipelines that incorporate anomaly detection, hyperparameter optimization, and sophisticated feature selection techniques. The findings underscore the transformative potential of advanced ML methodologies in traffic incident management, contributing to the development of safer, more efficient, and environmentally sustainable transportation systems.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/3748345","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/3748345","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This systematic literature review investigates the application of machine learning (ML) techniques for predicting traffic incident durations, a crucial component of intelligent transportation systems (ITSs) aimed at mitigating congestion and enhancing environmental sustainability. Utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, we systematically analyze literature that overviews models for incident duration prediction. Our review identifies that while traditional ML models like XGBoost and Random Forest are prevalent, significant potential exists for advanced methodologies such as bilevel and hybrid frameworks. Key challenges identified include the following: data quality issues, model interpretability, and the complexities associated with high-dimensional datasets. Future research directions proposed include the following: (1) development of data fusion models that integrate heterogeneous datasets of incident reports for enhanced predictive modeling; (2) utilization of natural language processing (NLP) to extract contextual information from textual incident reports; and (3) implementation of advanced ML pipelines that incorporate anomaly detection, hyperparameter optimization, and sophisticated feature selection techniques. The findings underscore the transformative potential of advanced ML methodologies in traffic incident management, contributing to the development of safer, more efficient, and environmentally sustainable transportation systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
期刊最新文献
Drive Risk Assessment Based on Game Theory Combinatorial Weighting—Unascertained Measure Theory Traffic Incident Duration Prediction: A Systematic Review of Techniques Energy Consumption Prediction Model for Electric Buses Considering Actual Quantifiable Features Introducing an Experimental Model of Asphalt Shear Strength Using Designed Jaws and Presentation of Shear Strength Prediction Model by Genetic Programming Method Indicators for Active Transportation in Tier II Indian Cities: A Case of Bhopal, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1