Cryolithionite-Based Pseudocapacitive Electrode for Sustainable Lithium-ion Capacitors

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-05-21 DOI:10.1002/batt.202400143
Lukas Ladenstein, Xuexue Pan, Hung Q. Nguyen, Daniel Knez, Martin Philipp, Gerald Kothleitner, Günther J. Redhammer, Qamar Abbas, Daniel Rettenwander
{"title":"Cryolithionite-Based Pseudocapacitive Electrode for Sustainable Lithium-ion Capacitors","authors":"Lukas Ladenstein,&nbsp;Xuexue Pan,&nbsp;Hung Q. Nguyen,&nbsp;Daniel Knez,&nbsp;Martin Philipp,&nbsp;Gerald Kothleitner,&nbsp;Günther J. Redhammer,&nbsp;Qamar Abbas,&nbsp;Daniel Rettenwander","doi":"10.1002/batt.202400143","DOIUrl":null,"url":null,"abstract":"<p>Lithium-ion insertion/deinsertion in anode at slow rates limits the power performance of energy storage devices. Here, a new pseudocapacitive electrode with high reversible capacity during cycling has been proposed for a lithium-ion capacitor. The lithium-fluoride garnet, namely Na<sub>3</sub>Fe<sub>2</sub>Li<sub>3</sub>F<sub>12</sub>, is obtained via precipitation from an aqueous solution at room temperature using abundant materials and exhibits a high discharge capacity of 746 mAh g<sup>−1</sup>. After the first charging cycle, the energy is stored via fast pseudocapacitive faradaic reactions which are facilitated by the nanocrystalline transport pathways with no structural modification to the electrode. The high stability window of F-garnet allows extracting cell voltages of 2.2–3.2 V in a lithium-ion capacitor where it is coupled with a porous carbon-based positive electrode, with a high energy efficiency of 93 % maintained for 10000 charge/discharge cycles. This study opens a new research direction concerning pseudocapacitive anode materials for enhancing power performance and even replacing the traditional battery-like anode materials.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 9","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400143","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400143","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion insertion/deinsertion in anode at slow rates limits the power performance of energy storage devices. Here, a new pseudocapacitive electrode with high reversible capacity during cycling has been proposed for a lithium-ion capacitor. The lithium-fluoride garnet, namely Na3Fe2Li3F12, is obtained via precipitation from an aqueous solution at room temperature using abundant materials and exhibits a high discharge capacity of 746 mAh g−1. After the first charging cycle, the energy is stored via fast pseudocapacitive faradaic reactions which are facilitated by the nanocrystalline transport pathways with no structural modification to the electrode. The high stability window of F-garnet allows extracting cell voltages of 2.2–3.2 V in a lithium-ion capacitor where it is coupled with a porous carbon-based positive electrode, with a high energy efficiency of 93 % maintained for 10000 charge/discharge cycles. This study opens a new research direction concerning pseudocapacitive anode materials for enhancing power performance and even replacing the traditional battery-like anode materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可持续锂离子电容器的基于冰晶石的伪电容电极
锂离子在阳极中的慢速插入/脱出限制了储能设备的功率性能。在此,我们为锂离子电容器提出了一种在循环过程中具有高可逆容量的新型伪电容电极。这种氟化锂石榴石(即 Na3Fe2Li3F12)是利用丰富的材料在室温下从水溶液中沉淀得到的,放电容量高达 746 mAh g-1。在第一个充电周期后,能量通过快速的伪电容性法拉第反应储存起来,而纳米晶体的传输通路促进了这种反应,电极的结构没有任何改变。F-garnet 的高稳定性窗口允许在锂离子电容器中提取 2.2-3.2 V 的电池电压,它与多孔碳基正极耦合,在 10000 次充放电循环中保持 93% 的高能效。这项研究开辟了有关伪电容正极材料的新研究方向,有助于提高电能性能,甚至取代传统的类电池正极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Cover Feature: Electrospun Quasi-Composite Polymer Electrolyte with Hydoxyl-Anchored Aluminosilicate Zeolitic Network for Dendrite Free Lithium Metal Batteries (Batteries & Supercaps 11/2024) Cover Picture: Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution (Batteries & Supercaps 11/2024) Cover Feature: Metal-Organic Framework Materials as Bifunctional Electrocatalyst for Rechargeable Zn-Air Batteries (Batteries & Supercaps 11/2024) Cover Picture: Ethanol-Based Solution Synthesis of a Functionalized Sulfide Solid Electrolyte: Investigation and Application (Batteries & Supercaps 10/2024) Cover Feature: Can Prussian Blue Analogues be Holy Grail for Advancing Post-Lithium Batteries? (Batteries & Supercaps 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1