{"title":"REAL ANALYTIC DISCRETE CHOICE MODELS OF DEMAND: THEORY AND IMPLICATIONS","authors":"Alessandro Iaria, Ao Wang","doi":"10.1017/s0266466624000148","DOIUrl":null,"url":null,"abstract":"We demonstrate that a large class of discrete choice models of demand can be approximated by real analytic demand models. We obtain this result by combining (i) a novel real analytic property of the mixed logit and the mixed probit models with any distribution of random coefficients and (ii) an approximation property of finite mixtures of Gumbel and Gaussian distributions. To illustrate some of the implications of this result, we discuss how real analyticity facilitates nonparametric and semi-nonparametric identification, extrapolation to hypothetical counterfactuals, numerical implementation of demand inverses, and numerical implementation of the maximum likelihood estimator.","PeriodicalId":502648,"journal":{"name":"Econometric Theory","volume":"38 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0266466624000148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate that a large class of discrete choice models of demand can be approximated by real analytic demand models. We obtain this result by combining (i) a novel real analytic property of the mixed logit and the mixed probit models with any distribution of random coefficients and (ii) an approximation property of finite mixtures of Gumbel and Gaussian distributions. To illustrate some of the implications of this result, we discuss how real analyticity facilitates nonparametric and semi-nonparametric identification, extrapolation to hypothetical counterfactuals, numerical implementation of demand inverses, and numerical implementation of the maximum likelihood estimator.