REAL ANALYTIC DISCRETE CHOICE MODELS OF DEMAND: THEORY AND IMPLICATIONS

Alessandro Iaria, Ao Wang
{"title":"REAL ANALYTIC DISCRETE CHOICE MODELS OF DEMAND: THEORY AND IMPLICATIONS","authors":"Alessandro Iaria, Ao Wang","doi":"10.1017/s0266466624000148","DOIUrl":null,"url":null,"abstract":"We demonstrate that a large class of discrete choice models of demand can be approximated by real analytic demand models. We obtain this result by combining (i) a novel real analytic property of the mixed logit and the mixed probit models with any distribution of random coefficients and (ii) an approximation property of finite mixtures of Gumbel and Gaussian distributions. To illustrate some of the implications of this result, we discuss how real analyticity facilitates nonparametric and semi-nonparametric identification, extrapolation to hypothetical counterfactuals, numerical implementation of demand inverses, and numerical implementation of the maximum likelihood estimator.","PeriodicalId":502648,"journal":{"name":"Econometric Theory","volume":"38 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0266466624000148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate that a large class of discrete choice models of demand can be approximated by real analytic demand models. We obtain this result by combining (i) a novel real analytic property of the mixed logit and the mixed probit models with any distribution of random coefficients and (ii) an approximation property of finite mixtures of Gumbel and Gaussian distributions. To illustrate some of the implications of this result, we discuss how real analyticity facilitates nonparametric and semi-nonparametric identification, extrapolation to hypothetical counterfactuals, numerical implementation of demand inverses, and numerical implementation of the maximum likelihood estimator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
需求的真实分析离散选择模型:理论与影响
我们证明,一大类需求的离散选择模型可以用真实分析需求模型来近似。我们通过结合(i)具有任意随机系数分布的混合 logit 模型和混合 probit 模型的新型实分析特性,以及(ii)Gumbel 和高斯分布的有限混合物的近似特性,得出了这一结果。为了说明这一结果的一些含义,我们讨论了实分析性如何促进非参数和半非参数识别、外推到假设的反事实、需求倒数的数值实现以及最大似然估计器的数值实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HETEROSKEDASTICITY ROBUST SPECIFICATION TESTING IN SPATIAL AUTOREGRESSION REAL ANALYTIC DISCRETE CHOICE MODELS OF DEMAND: THEORY AND IMPLICATIONS THE ECONOMETRIC THEORY AWARDS 2024 IDENTIFICATION ROBUST INFERENCE FOR MOMENTS-BASED ANALYSIS OF LINEAR DYNAMIC PANEL DATA MODELS – ADDENDUM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1