Zhouyang Xu, A. Zeidan, Yetao He, Lisa W M Leung, Calum Byrne, Sachin Sabu, Yuanwei Wu, Zhiyue Chen, Steven E. Williams, Lukas Lindenroth, Jonathan Behar, Christopher Aldo Rinaldi, John Whitaker, A. Arujuna, R. Housden, K. Rhode
{"title":"CardioXplorer: An Open-Source Modular Teleoperative Robotic Catheter Ablation System","authors":"Zhouyang Xu, A. Zeidan, Yetao He, Lisa W M Leung, Calum Byrne, Sachin Sabu, Yuanwei Wu, Zhiyue Chen, Steven E. Williams, Lukas Lindenroth, Jonathan Behar, Christopher Aldo Rinaldi, John Whitaker, A. Arujuna, R. Housden, K. Rhode","doi":"10.3390/robotics13050080","DOIUrl":null,"url":null,"abstract":"Atrial fibrillation, the most prevalent cardiac arrhythmia, is treated by catheter ablation to isolate electrical triggers. Clinical trials on robotic catheter systems hold promise for improving the safety and efficacy of the procedure. However, expense and proprietary designs hinder accessibility to such systems. This paper details an open-source, modular, three-degree-of-freedom robotic platform for teleoperating commercial ablation catheters through joystick navigation. We also demonstrate a catheter-agnostic handle interface permitting customization with commercial catheters. Collaborating clinicians performed benchtop targeting trials, comparing manual and robotic catheter navigation performance. The robot reduced task duration by 1.59 s across participants and five trials. Validation through mean motion jerk analysis revealed 35.2% smoother robotic navigation for experts (≥10 years experience) compared to the intermediate group. Yet, both groups achieved smoother robot motion relative to the manual approach, with the experts and intermediates exhibiting 42.2% and 13.6% improvements, respectively. These results highlight the potential of this system for enhancing catheter-based procedures. The source code and designs of CardioXplorer have been made publicly available to lower boundaries and drive innovations that enhance procedure efficacy beyond human capabilities.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics13050080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Atrial fibrillation, the most prevalent cardiac arrhythmia, is treated by catheter ablation to isolate electrical triggers. Clinical trials on robotic catheter systems hold promise for improving the safety and efficacy of the procedure. However, expense and proprietary designs hinder accessibility to such systems. This paper details an open-source, modular, three-degree-of-freedom robotic platform for teleoperating commercial ablation catheters through joystick navigation. We also demonstrate a catheter-agnostic handle interface permitting customization with commercial catheters. Collaborating clinicians performed benchtop targeting trials, comparing manual and robotic catheter navigation performance. The robot reduced task duration by 1.59 s across participants and five trials. Validation through mean motion jerk analysis revealed 35.2% smoother robotic navigation for experts (≥10 years experience) compared to the intermediate group. Yet, both groups achieved smoother robot motion relative to the manual approach, with the experts and intermediates exhibiting 42.2% and 13.6% improvements, respectively. These results highlight the potential of this system for enhancing catheter-based procedures. The source code and designs of CardioXplorer have been made publicly available to lower boundaries and drive innovations that enhance procedure efficacy beyond human capabilities.
期刊介绍:
Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM