Lingxiang Guo, Shiwei Huang, Wei Li, Junshuai Lv, Jia Sun
{"title":"Theoretical design and experimental verification of high-entropy carbide ablative resistant coating","authors":"Lingxiang Guo, Shiwei Huang, Wei Li, Junshuai Lv, Jia Sun","doi":"10.1016/j.apmate.2024.100213","DOIUrl":null,"url":null,"abstract":"<div><p>Composition design of high-entropy carbides is a topic of great scientific interest for the hot-end parts in the aerospace field. A novel theoretical method through an inverse composition design route, <em>i.e.</em> initially ensuring the oxide scale with excellent anti-ablation stability, is proposed to improve the ablation resistance of the high-entropy carbide coatings. In this work, the (Hf<sub>0.36</sub>Zr<sub>0.24</sub>Ti<sub>0.1</sub>Sc<sub>0.1</sub>Y<sub>0.1</sub>La<sub>0.1</sub>)C<sub>1-δ</sub> (HEC) coatings were prepared by the inverse design concept and verified by the ablation resistance experiment. The linear ablation rate of the HEC coatings is −1.45 μm/s, only 4.78 % of the pristine HfC coatings after the oxyacetylene ablation at 4.18 MW/m<sup>2</sup>. The HEC possesses higher toughness with a higher Pugh's ratio of 1.55 in comparison with HfC (1.30). The <em>in-situ</em> formed dense (Hf<sub>0.36</sub>Zr<sub>0.24</sub>Ti<sub>0.1</sub>Sc<sub>0.1</sub>Y<sub>0.1</sub>La<sub>0.1</sub>)O<sub>2-δ</sub> oxide scale during ablation benefits to improve the anti-ablation performance attributed to its high structural adaptability with a lattice constant change not exceeding 0.19 % at 2000–2300 °C. The current investigation demonstrates the effectiveness of the inverse theoretical design, providing a novel optimization approach for ablation protection of high-entropy carbide coatings.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 5","pages":"Article 100213"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000447/pdfft?md5=3f879f7b5d3ddb3bae27c7a495277ceb&pid=1-s2.0-S2772834X24000447-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Composition design of high-entropy carbides is a topic of great scientific interest for the hot-end parts in the aerospace field. A novel theoretical method through an inverse composition design route, i.e. initially ensuring the oxide scale with excellent anti-ablation stability, is proposed to improve the ablation resistance of the high-entropy carbide coatings. In this work, the (Hf0.36Zr0.24Ti0.1Sc0.1Y0.1La0.1)C1-δ (HEC) coatings were prepared by the inverse design concept and verified by the ablation resistance experiment. The linear ablation rate of the HEC coatings is −1.45 μm/s, only 4.78 % of the pristine HfC coatings after the oxyacetylene ablation at 4.18 MW/m2. The HEC possesses higher toughness with a higher Pugh's ratio of 1.55 in comparison with HfC (1.30). The in-situ formed dense (Hf0.36Zr0.24Ti0.1Sc0.1Y0.1La0.1)O2-δ oxide scale during ablation benefits to improve the anti-ablation performance attributed to its high structural adaptability with a lattice constant change not exceeding 0.19 % at 2000–2300 °C. The current investigation demonstrates the effectiveness of the inverse theoretical design, providing a novel optimization approach for ablation protection of high-entropy carbide coatings.